Basic Information

Gene Symbol
Tdpoz5
Assembly
GCA_963675445.1
Location
OY776279.1:69756534-69756956[-]

Transcription Factor Domain

TF Family
BTB
Domain
zf-C2H2|ZBTB
PFAM
PF00651
TF Group
Zinc-Coordinating Group
Description
The BTB (for BR-C, ttk and bab) [6] or POZ (for Pox virus and Zinc finger) [1] domain is present near the N-terminus of a fraction of zinc finger (Pfam:PF00096) proteins and in proteins that contain the Pfam:PF01344 motif such as Kelch and a family of pox virus proteins. The BTB/POZ domain mediates homomeric dimerisation and in some instances heteromeric dimerisation [1]. The structure of the dimerised PLZF BTB/POZ domain has been solved and consists of a tightly intertwined homodimer. The central scaffolding of the protein is made up of a cluster of alpha-helices flanked by short beta-sheets at both the top and bottom of the molecule [2]. POZ domains from several zinc finger proteins have been shown to mediate transcriptional repression and to interact with components of histone deacetylase co-repressor complexes including N-CoR and SMRT [5, 3, 4]. The POZ or BTB domain is also known as BR-C/Ttk or ZiN.
Hmmscan Out
# of c-Evalue i-Evalue score bias hmm coord from hmm coord to ali coord from ali coord to env coord from env coord to acc
1 2 3.1e-13 1.6e-10 42.4 0.2 34 109 9 83 6 84 0.92
2 2 2.5 1.3e+03 0.8 0.0 77 107 83 113 79 115 0.76

Sequence Information

Coding Sequence
ATGTGTTTTGACCAGACCAGCCTCAGCAAAGTACTTGAGGCCATGTTTGAGTACGACATGCAGGAGGCTCAATCCAATAAAGTTTTTATCGAAGATGTTGATGCAGAGACCTGCAACGAAATGTTGCGTTTCATGTACACGGGAAAGGTGTTGGATATTGGACGATTGGCTCCTAAGCTTTTGGCTGTCAGCGATAAATATGATTTGGAGCAACTGAAGGGAATTTGTGCAACTGAAATGgagaaaaatatatcagttgATAATGCAGTGGAGACGTTGAGGTTGGCAGATTTACACCGCGAAGAAGAGCTAAGGGAGtgtgcaatttattttataaaagacaaCATGAGTGCCGTGAAACTTACCGAAAGCTGGAAATATCTTGTCGATCATATTGATTGggatgaaatatataaatcctag
Protein Sequence
MCFDQTSLSKVLEAMFEYDMQEAQSNKVFIEDVDAETCNEMLRFMYTGKVLDIGRLAPKLLAVSDKYDLEQLKGICATEMEKNISVDNAVETLRLADLHREEELRECAIYFIKDNMSAVKLTESWKYLVDHIDWDEIYKS

Similar Transcription Factors

Sequence clustering based on sequence similarity using MMseqs2

100% Identity
-
90% Identity
-
80% Identity
-