Basic Information

Gene Symbol
-
Assembly
GCA_963555695.1
Location
OY743155.1:2063423-2086953[-]

Transcription Factor Domain

TF Family
SRF
Domain
SRF domain
PFAM
PF00319
TF Group
Helix-turn-helix
Description
Serum response factor (SRF) is a ubiquitous nuclear protein important for cell proliferation and differentiation. SRF function is essential for transcriptional regulation of numerous growth-factor-inducible genes, such as c-fos oncogene and muscle-specific actin genes. A core domain of around 90 amino acids is sufficient for the activities of DNA-binding, dimerisation and interaction with accessory factors. Within the core is a DNA-binding region, designated the MADS box [2], that is highly similar to many eukaryotic regulatory proteins: among these are MCM1, the regulator of cell type-specific genes in fission yeast; DSRF, a Drosophila trachea development factor; the MEF2 family of myocyte-specific enhancer factors; and the Agamous and Deficiens families of plant homeotic proteins. In SRF, the MADS box has been shown to be involved in DNA-binding and dimerisation [1]. Proteins belonging to the MADS family function as dimers, the primary DNA-binding element of which is an anti-parallel coiled coil of two amphipathic α-helices, one from each subunit. The DNA wraps around the coiled coil allowing the basic N-termini of the helices to fit into the DNA major groove. The chain extending from the helix N-termini reaches over the DNA backbone and penetrates into the minor groove. A 4-stranded, anti-parallel β-sheet packs against the coiled-coil face opposite the DNA and is the central element of the dimerisation interface. The MADS-box domain is commonly found associated with K-box region see (IPR002487).
Hmmscan Out
# of c-Evalue i-Evalue score bias hmm coord from hmm coord to ali coord from ali coord to env coord from env coord to acc
1 25 0.015 1.8e+02 3.4 0.0 26 40 276 290 268 295 0.84
2 25 0.015 1.8e+02 3.4 0.0 26 40 316 330 308 335 0.84
3 25 0.015 1.8e+02 3.4 0.0 26 40 356 370 348 375 0.84
4 25 0.015 1.8e+02 3.4 0.0 26 40 396 410 388 415 0.84
5 25 0.015 1.8e+02 3.4 0.0 26 40 436 450 428 455 0.84
6 25 0.015 1.8e+02 3.4 0.0 26 40 476 490 468 495 0.84
7 25 0.015 1.8e+02 3.4 0.0 26 40 516 530 508 535 0.84
8 25 0.015 1.8e+02 3.4 0.0 26 40 556 570 548 575 0.84
9 25 0.015 1.8e+02 3.4 0.0 26 40 596 610 588 615 0.84
10 25 0.015 1.8e+02 3.4 0.0 26 40 636 650 628 655 0.84
11 25 0.015 1.8e+02 3.4 0.0 26 40 676 690 668 695 0.84
12 25 0.015 1.8e+02 3.4 0.0 26 40 716 730 708 735 0.84
13 25 0.015 1.8e+02 3.4 0.0 26 40 756 770 748 775 0.84
14 25 0.015 1.8e+02 3.4 0.0 26 40 796 810 788 815 0.84
15 25 0.015 1.8e+02 3.4 0.0 26 40 836 850 828 855 0.84
16 25 0.015 1.8e+02 3.4 0.0 26 40 876 890 868 895 0.84
17 25 0.015 1.8e+02 3.4 0.0 26 40 916 930 908 935 0.84
18 25 0.015 1.8e+02 3.4 0.0 26 40 956 970 948 975 0.84
19 25 0.015 1.8e+02 3.4 0.0 26 40 996 1010 988 1015 0.84
20 25 0.015 1.8e+02 3.4 0.0 26 40 1036 1050 1028 1055 0.84
21 25 0.015 1.8e+02 3.4 0.0 26 40 1076 1090 1068 1095 0.84
22 25 0.015 1.8e+02 3.4 0.0 26 40 1116 1130 1108 1135 0.84
23 25 0.015 1.8e+02 3.4 0.0 26 40 1156 1170 1148 1175 0.84
24 25 0.014 1.7e+02 3.4 0.0 26 40 1196 1210 1188 1216 0.84
25 25 1.7 2e+04 -3.2 0.1 12 20 1386 1394 1380 1394 0.93

Sequence Information

Coding Sequence
ATGTCACTAATATACACTATAAGTTCTGGAGAGAGTGATAATGACTTTGATGAGATACTGCCGCTAGAAGGAGCTGGAGACAAAAGAACATGTAAAGATTCTGACGCTGAGTTAATGGATCATGACTCAAATACCAACAATGACTTCAATGGACGGAGCCTTCCCTGTGAGATTGACATGGATGATGATACACCTATCCTTGAAAATAAGTCAGTTGGAGAGTATAACCTTATCAGAGAAAATAGCCTTGTTGGTGAAAATACCCTGGAGCCGGAACAGCTGAATGACAATAATGTTTctCTAGATGGAATGGTTCATCTAGCCTTCCATGATCGCAGCAGTAGTCCAGATGTTGAAATGGACCCAACAGAAAATGGTGTGAAGCGAAAAAGTGCAGGTAGCCCAAAAGGCAAAGGTAAGAAGACATCAAACGCAGCATTAGAGAGACAAACTAAGAAGCAGAAGTTGGCAGAAGAGAAGGCTGCTAAGAAGACAGCTGCTGAAATGAACAAGATATACAGGCCAGGGGAGTGTATGAAGTACATAAACATAGAGGGTCACCCCAGCCTGTGGGCCCGCTGGTACATGGCGAGCGTGCCGAGCGAGGTGTCACAGCTGGGCGCGCACGTGCTGCAGGCGCACACGCTGTGCCACCCCGCGCTCGTCGTGTGGACCAGGACTATACCCAGGACCCTGGATACCGAGGGTGGACAggttaaATTAAGTCCATTACGAGAACCGTGCGACCGCGCGCTTTTCGTAGCCGACGCCGATGAGCTCTGCGAGATGGTGAGCTCACACACGCTCAGCTCACATCTGTCGCAGATACGAGAGCTGTGTGACTGCGAGCTGACGCTGTTAGTGTTCAATGTGAAAGACTACTTCAACGCGGTGGAGCTCTGCGAGATGGTGAGCTCACACACGCTCAGCTCACATCTGTCGCAGATACGAGAGCTGTGTGACTGCGAGCTGACGCTGTTAGTGTTCAATGTGAAAGACTACTTCAACGCGGTGGAGCTCTGCGAGATGGTGAGCTCACACACGCTCAGCTCACATCTGTCGCAGATACGAGAGCTGTGTGACTGCGAGCTGACGCTGTTAGTGTTCAATGTGAAAGACTACTTCAACGCGGTGGAGCTCTGCGAGATGGTGAGCTCACACACGCTCAGCTCACATCTGTCGCAGATACGAGAGCTGTGTGACTGCGAGCTGACGCTGTTAGTGTTCAATGTGAAAGACTACTTCAACGCGGTGGAGCTCTGCGAGATGGTGAGCTCACACACGCTCAGCTCACATCTGTCGCAGATACGAGAGCTGTGTGACTGCGAGCTGACGCTGTTAGTGTTCAATGTGAAAGACTACTTCAACGCGGTGGAGCTCTGCGAGATGGTGAGCTCACACACGCTCAGCTCACATCTGTCGCAGATACGAGAGCTGTGTGACTGCGAGCTGACGCTGTTAGTGTTCAATGTGAAAGACTACTTCAACGCGGTGGAGCTCTGCGAGATGGTGAGCTCACACACGCTCAGCTCACATCTGTCGCAGATACGAGAGCTGTGTGACTGCGAGCTGACGCTGTTAGTGTTCAATGTGAAAGACTACTTCAACGCGGTGGAGCTCTGCGAGATGGTGAGCTCACACACGCTCAGCTCACATCTGTCGCAGATACGAGAGCTGTGTGACTGCGAGCTGACGCTGTTAGTGTTCAATGTGAAAGACTACTTCAACGCGGTGGAGCTCTGCGAGATGGTGAGCTCACACACGCTCAGCTCACATCTGTCGCAGATACGAGAGCTGTGTGACTGCGAGCTGACGCTGTTAGTGTTCAATGTGAAAGACTACTTCAACGCGGTGGAGCTCTGCGAGATGGTGAGCTCACACACGCTCAGCTCACATCTGTCGCAGATACGAGAGCTGTGTGACTGCGAGCTGACGCTGTTAGTGTTCAATGTGAAAGACTACTTCAACGCGGTGGAGCTCTGCGAGATGGTGAGCTCACACACGCTCAGCTCACATCTGTCGCAGATACGAGAGCTGTGTGACTGCGAGCTGACGCTGTTAGTGTTCAATGTGAAAGACTACTTCAACGCGGTGGAGCTCTGCGAGATGGTGAGCTCACACACGCTCAGCTCACATCTGTCGCAGATACGAGAGCTGTGTGACTGCGAGCTGACGCTGTTAGTGTTCAATGTGAAAGACTACTTCAACGCGGTGGAGCTCTGCGAGATGGTGAGCTCACACACGCTCAGCTCACATCTGTCGCAGATACGAGAGCTGTGTGACTGCGAGCTGACGCTGTTAGTGTTCAATGTGAAAGACTACTTCAACGCGGTGGAGCTCTGCGAGATGGTGAGCTCACACACGCTCAGCTCACATCTGTCGCAGATACGAGAGCTGTGTGACTGCGAGCTGACGCTGTTAGTGTTCAATGTGAAAGACTACTTCAACGCGGTGGAGCTCTGCGAGATGGTGAGCTCACACACGCTCAGCTCACATCTGTCGCAGATACGAGAGCTGTGTGACTGCGAGCTGACGCTGTTAGTGTTCAATGTGAAAGACTACTTCAACGCGGTGGAGCTCTGCGAGATGGTGAGCTCACACACGCTCAGCTCACATCTGTCGCAGATACGAGAGCTGTGTGACTGCGAGCTGACGCTGTTAGTGTTCAATGTGAAAGACTACTTCAACGCGGTGGAGCTCTGCGAGATGGTGAGCTCACACACGCTCAGCTCACATCTGTCGCAGATACGAGAGCTGTGTGACTGCGAGCTGACGCTGTTAGTGTTCAATGTGAAAGACTACTTCAACGCGGTGGAGCTCTGCGAGATGGTGAGCTCACACACGCTCAGCTCACATCTGTCGCAGATACGAGAGCTGTGTGACTGCGAGCTGACGCTGTTAGTGTTCAATGTGAAAGACTACTTCAACGCGGTGGAGCTCTGCGAGATGGTGAGCTCACACACGCTCAGCTCACATCTGTCGCAGATACGAGAGCTGTGTGACTGCGAGCTGACGCTGTTAGTGTTCAATGTGAAAGACTACTTCAACGCGGTGGAGCTCTGCGAGATGGTGAGCTCACACACGCTCAGCTCACATCTGTCGCAGATACGAGAGCTGTGTGACTGCGAGCTGACGCTGTTAGTGTTCAATGTGAAAGACTACTTCAACGCGGTGGAGCTCTGCGAGATGGTGAGCTCACACACGCTCAGCTCACATCTGTCGCAGATACGAGAGCTGTGTGACTGCGAGCTGACGCTGTTAGTGTTCAATGTGAAAGACTACTTCAACGCGGTGGAGCTCTGCGAGATGGTGAGCTCACACACGCTCAGCTCACATCTGTCGCAGATACGAGAGCTGTGTGACTGCGAGCTGACGCTGTTAGTGTTCAATGTGAAAGACTACTTCAACGCGGTGGAGCTCTGCGAGATGGTGAGCTCACACACGCTCAGCTCACATCTGTCGCAGATACGAGAGCTGTGTGACTGCGAGCTGACGCTGTTAGTGTTCAATGTGAAAGACTACTTCAACGCGGTGGAGCTCTGCGAGATGGTGAGCTCACACACGCTCAGCTCACATCTGTCGCAGATACGAGAGCTGTGTGACTGCGAGCTGACGCTGTTAGTGTTCAATGTGAAAGACTACTTCAAAAAGAAAGCTCGTAGCACTGAAACCTCTGTTCACAGCGCACCACGGCGCAGGACATCTAACAGTAATCGAAAGGCGATGACTGAAATAGAGTTTGAATTAGCTATAACAGATCTGTTGGTTACTGCTGAGTGCGACACAGTGATAGCGAACACAGCAAGTGAACTAGCTTCGAGTATAGTGCAGTTGACGAAGGCGATCGCCGAAGGACCAGCTAAAAAAGCGCAACATGCTTGCGACGACAAAGCCGGGTTCTACATGAGAGGTGACAACAAACACTGTGTTGCTGTCGACAAAAATGGTGTTGGCGTAGGCAGGCTGTGGCAGCAGATGCTGGCCATACTGCCACAGTCCAGTCTGGAGACGTCGCGAACGATCTGCGCGCAGTACAAGTCGCCTCTTGCGTTGTATGAGtCCCTACAGTCATCGGACGGTATATCCCAGTTAGCGGACTTAGGTGTATCTCGTACGGGGGTGGCCGGCTCACGAGCGCGGCGAGTTGGGCACGAATTCTCTCGAAGGCTCCACACGTTGTTCATGGCTACAGATGGAGACCAAATCATAGAATAA
Protein Sequence
MSLIYTISSGESDNDFDEILPLEGAGDKRTCKDSDAELMDHDSNTNNDFNGRSLPCEIDMDDDTPILENKSVGEYNLIRENSLVGENTLEPEQLNDNNVSLDGMVHLAFHDRSSSPDVEMDPTENGVKRKSAGSPKGKGKKTSNAALERQTKKQKLAEEKAAKKTAAEMNKIYRPGECMKYINIEGHPSLWARWYMASVPSEVSQLGAHVLQAHTLCHPALVVWTRTIPRTLDTEGGQVKLSPLREPCDRALFVADADELCEMVSSHTLSSHLSQIRELCDCELTLLVFNVKDYFNAVELCEMVSSHTLSSHLSQIRELCDCELTLLVFNVKDYFNAVELCEMVSSHTLSSHLSQIRELCDCELTLLVFNVKDYFNAVELCEMVSSHTLSSHLSQIRELCDCELTLLVFNVKDYFNAVELCEMVSSHTLSSHLSQIRELCDCELTLLVFNVKDYFNAVELCEMVSSHTLSSHLSQIRELCDCELTLLVFNVKDYFNAVELCEMVSSHTLSSHLSQIRELCDCELTLLVFNVKDYFNAVELCEMVSSHTLSSHLSQIRELCDCELTLLVFNVKDYFNAVELCEMVSSHTLSSHLSQIRELCDCELTLLVFNVKDYFNAVELCEMVSSHTLSSHLSQIRELCDCELTLLVFNVKDYFNAVELCEMVSSHTLSSHLSQIRELCDCELTLLVFNVKDYFNAVELCEMVSSHTLSSHLSQIRELCDCELTLLVFNVKDYFNAVELCEMVSSHTLSSHLSQIRELCDCELTLLVFNVKDYFNAVELCEMVSSHTLSSHLSQIRELCDCELTLLVFNVKDYFNAVELCEMVSSHTLSSHLSQIRELCDCELTLLVFNVKDYFNAVELCEMVSSHTLSSHLSQIRELCDCELTLLVFNVKDYFNAVELCEMVSSHTLSSHLSQIRELCDCELTLLVFNVKDYFNAVELCEMVSSHTLSSHLSQIRELCDCELTLLVFNVKDYFNAVELCEMVSSHTLSSHLSQIRELCDCELTLLVFNVKDYFNAVELCEMVSSHTLSSHLSQIRELCDCELTLLVFNVKDYFNAVELCEMVSSHTLSSHLSQIRELCDCELTLLVFNVKDYFNAVELCEMVSSHTLSSHLSQIRELCDCELTLLVFNVKDYFNAVELCEMVSSHTLSSHLSQIRELCDCELTLLVFNVKDYFNAVELCEMVSSHTLSSHLSQIRELCDCELTLLVFNVKDYFKKKARSTETSVHSAPRRRTSNSNRKAMTEIEFELAITDLLVTAECDTVIANTASELASSIVQLTKAIAEGPAKKAQHACDDKAGFYMRGDNKHCVAVDKNGVGVGRLWQQMLAILPQSSLETSRTICAQYKSPLALYESLQSSDGISQLADLGVSRTGVAGSRARRVGHEFSRRLHTLFMATDGDQIIE

Similar Transcription Factors

Sequence clustering based on sequence similarity using MMseqs2

100% Identity
-
90% Identity
-
80% Identity
-