Basic Information

Gene Symbol
-
Assembly
GCA_951394065.1
Location
OX596063.1:6495076-6513015[+]

Transcription Factor Domain

TF Family
zf-C2H2
Domain
zf-C2H2 domain
PFAM
PF00096
TF Group
Zinc-Coordinating Group
Description
The C2H2 zinc finger is the classical zinc finger domain. The two conserved cysteines and histidines co-ordinate a zinc ion. The following pattern describes the zinc finger. #-X-C-X(1-5)-C-X3-#-X5-#-X2-H-X(3-6)-[H/C] Where X can be any amino acid, and numbers in brackets indicate the number of residues. The positions marked # are those that are important for the stable fold of the zinc finger. The final position can be either his or cys. The C2H2 zinc finger is composed of two short beta strands followed by an alpha helix. The amino terminal part of the helix binds the major groove in DNA binding zinc fingers. The accepted consensus binding sequence for Sp1 is usually defined by the asymmetric hexanucleotide core GGGCGG but this sequence does not include, among others, the GAG (=CTC) repeat that constitutes a high-affinity site for Sp1 binding to the wt1 promoter [1].
Hmmscan Out
# of c-Evalue i-Evalue score bias hmm coord from hmm coord to ali coord from ali coord to env coord from env coord to acc
1 14 0.75 58 5.1 0.0 3 23 186 206 184 206 0.95
2 14 0.00094 0.073 14.2 1.6 1 23 309 331 309 331 0.99
3 14 2.8e-05 0.0022 19.0 0.6 1 23 337 360 337 360 0.96
4 14 0.12 9.3 7.6 4.4 1 23 365 388 365 388 0.93
5 14 4.5e-06 0.00034 21.5 2.2 2 23 559 580 559 580 0.98
6 14 0.00016 0.012 16.6 0.8 1 23 586 608 586 608 0.97
7 14 0.0011 0.088 13.9 4.8 1 23 673 695 673 695 0.97
8 14 0.0025 0.2 12.9 2.3 1 23 730 752 730 752 0.97
9 14 4.1e-06 0.00032 21.6 0.8 1 23 760 782 760 782 0.98
10 14 0.026 2 9.7 2.2 1 23 791 813 791 813 0.98
11 14 0.00011 0.0087 17.1 0.9 3 23 873 893 872 893 0.98
12 14 0.012 0.89 10.8 5.6 1 23 910 932 910 932 0.97
13 14 3e-06 0.00024 22.0 0.7 1 23 938 960 938 960 0.98
14 14 4.9e-06 0.00038 21.4 3.3 1 23 966 989 966 989 0.98

Sequence Information

Coding Sequence
ATGGACTCCAATCTGATGGAAGTAGATCCACTGAGATCTTATGGGCAGTACAGTTCTTACCAACCACCATATTCTCATACACAACCCAATGCCCCTCTCACACAACCAAATATCCCTCATTCCCAACCAAGCGACATTAAATCTCAACCCAATCCCCGTGCCTCTCAACAAAGTATCCCCAATTTGCAGTCAATACCAGAATTACTGCCTATCATTCCCAACGCACATTCAATACCTCGGTCACAACCAAATATCCCTAACTCCATCCCTATACAACCTCCTTACTACCCAATTCCATACAGCCAAAATATAGCTGATAGTCAAAATAGTCATACAGAACCGGTACATAGTCTAGGATGTGGTCAAAGCTATGTTGCTCAAAACACCAGTGACTTTGTACAGGATAATAATGTACCAGAAACTATGAATGATGAGGAGTTGGACATAAAACCAGACATATCAAAGATTATATTAAAGAAACCAAAAAAGCCAAAAGGAAAAACAAGCAATTACTGGAATAAGAAAGTAACAGATAAAGATTTCAAGTTCTATGGATGCTCTGTATGCAACATCGCTTACGAAAAGCTAACCGACCTAGATGCTCATGTTGTAATACACAGCAACAGAGTTACCAGCTATGATATCCGATTGCAAAACATAAAGAAGCGCAAACGGCTTAAGAAggagaaaaagaagaagaagaagaaagggACCAAGCTTAAAGCAGAAGATGTAGAAATCAAGCCAGAAGATGGCTACATTGGTACTGAGAAAGCTGGTGATTTTAACCAACCTGATATCAAAGAGAGCAATAATGTCAAAGATAATAATGAAGTcaaagaaaataatgaaatcaAAGAGAATAAAGATGTTAAAGAGCATAAACCAGTAGTTAAAAGCAATGAGAATAAAAAGAATGAGGTTTACAAATGTTTTGCGTGTAACAAGCAATTTGCGTTAAGCTACTATTTGAAGATACATGTCAGATCTCATACAGATGAAAAACCGTACATATGCAATTACTgtggacaaacatttataacgGCCAGCAAACTCGGCAGACACAACAAGAGGATCCACTTAGCTGTACGCCATCAGTGCAGAATATGCTATGCATTTTTCAGCAGATTCGAGCTTCTAACCAAACATTTTGACAAGAAACACGCTGATCAAAAATTAGATGGAGAACCGTATGATTACAACGCAATACTGCCGTACCTAACAGAACTGGAGGACCAATTCAAAATGGAGTCTGAATCAAAGGACAAGAAACCTAAAACGGAGGACATCTGGGGCGATTGGCCTCAGAACGGTAACATGGAAGTGTCTAAGGCAGAGGACAGTAAAGAGAAGGTGGAAAAGgAACCTTCATCTCCGAAGTTAGAGCCAGCGCTAACTATCGGGGACCGTAAATATGAGGAAGTAGAAATAAAGTGTGAACAGGAAGAGTTGGAGGTCTTGGATGCAGCGTTCGAGGAAGGAGTGATCACAGAGACGTTTGAACCAGAATTTACatccgatgatgatgattctccGGACTATGTCAAGGAAGAAAGACTGCCATCATCAGACGACGAAGAGGAGTATTTCCCCCCCACCGGCTGGGCGGGCTCCGCCCCTGTCGATGACGGGCCCCCCATTTTACCCCCTACCACGAAACAGGGAGAGAAAGGGGAATGCACCATCTGCCGCCGCAAGTTCAGCAGTACGAGCTACTTAAAGATACATATGAGGACGCATACGGGCGAACGACCGTTCTCTTGCTACGTGTGCGGGCGTGCGTTCATCACGGCCAGCAAAATGCATCGGCACGTGTTGATACACGAGGAGACTTGGGTCGGCGAAGATAGAATTAAAACGGAAGGCGAGATCGTCAAATCTGAAACAGAGGACGATGTCGACACGGCTAAACtattaaaaaaAAACAAAGCGAGAATAGAGAAAGCGAAGGACAAACTGCTGAAGAAACCGAACAAACGAATGGACCCCGAACTAAAGAAAGGCAGAGGGCGTCCGCACAACTGCGAGTACTGTGGGAAGaaGTTCCTCCACTACGAAACCCTGCAGGTGCATATGAAGTCTCACGATGGAGAGGATCTCATCCTCAAATGTAACTTCTGCCTGGAGCCGCAACTCGACCAGgtgGCGAAGCGAGAACACGAAGTGACCCATTCCGGACCGAAGCCCTACTTCTGCACGCTCTGCGGACGGAAGTACAAGGACAAAGGCTCCATGGTTTACCACAGGAAGAACCACAAGCCGACGGACACGAAGCTGTTCATCTGCGACATCTGCTCCAAGAGGTTCAACTCGCAAGCCAAGCTCTCCAGACACATCCTCACGCACACCTCCCAGAAATTCGTGCTTCGCTACGAGTGTCCGGTTTGCGCAAACATGTTCCACACACGGTGGCATGTGCAAATGCATCTCAAGTCGCATCAGAAGGAAGGACTAATACTAGAAGAGAATAGAAACGCCGTGTTAGCGATGGTACTTCAAAACGCGCGCAAGGTGCCAAAAGGAGGCTCAGGCCCCGATACCGCGACCCCCGACGTCGCACCCGCTGTCCCTGCGCGCCCTGGGACGCCTCCCTCCACCGACGAGCAGTCCCGGATATGTAACATATGCGGACAGGTGTTCCAACACTTCTACTATTTAGAAGAACATCTGAAGACGCATGGCTCTAAGATAGCGGTCGAAGATTTGGACAAGGAAGAGGAGAAGAAGTACACTTGCCAGGTGTGCTCCAAATCGTTCAAGCTGCACTACTACCTGAAACTGCACAGTTTCACCCACACGAAGGAGAAACCGTTCATCTGCCAACAATGCGGGAAGGGGTTCATCACGCGCGGGAAACTCAAACGGCATCTGGAGACCCACCAGGGGCTGAAGAAGTACCAGTGCCACATTTGTTACAAGTTCTTCACTCGCCCGAGCTATATGAGGATCCATGTGAGGACTATCCACGGGACGCAGGACTATAACTTCAGTACGTATGGCGTGGGGGTACCATTGGGGCTGGGTGTGTCCGTGGGACAGATGGATGATCTGTGA
Protein Sequence
MDSNLMEVDPLRSYGQYSSYQPPYSHTQPNAPLTQPNIPHSQPSDIKSQPNPRASQQSIPNLQSIPELLPIIPNAHSIPRSQPNIPNSIPIQPPYYPIPYSQNIADSQNSHTEPVHSLGCGQSYVAQNTSDFVQDNNVPETMNDEELDIKPDISKIILKKPKKPKGKTSNYWNKKVTDKDFKFYGCSVCNIAYEKLTDLDAHVVIHSNRVTSYDIRLQNIKKRKRLKKEKKKKKKKGTKLKAEDVEIKPEDGYIGTEKAGDFNQPDIKESNNVKDNNEVKENNEIKENKDVKEHKPVVKSNENKKNEVYKCFACNKQFALSYYLKIHVRSHTDEKPYICNYCGQTFITASKLGRHNKRIHLAVRHQCRICYAFFSRFELLTKHFDKKHADQKLDGEPYDYNAILPYLTELEDQFKMESESKDKKPKTEDIWGDWPQNGNMEVSKAEDSKEKVEKEPSSPKLEPALTIGDRKYEEVEIKCEQEELEVLDAAFEEGVITETFEPEFTSDDDDSPDYVKEERLPSSDDEEEYFPPTGWAGSAPVDDGPPILPPTTKQGEKGECTICRRKFSSTSYLKIHMRTHTGERPFSCYVCGRAFITASKMHRHVLIHEETWVGEDRIKTEGEIVKSETEDDVDTAKLLKKNKARIEKAKDKLLKKPNKRMDPELKKGRGRPHNCEYCGKKFLHYETLQVHMKSHDGEDLILKCNFCLEPQLDQVAKREHEVTHSGPKPYFCTLCGRKYKDKGSMVYHRKNHKPTDTKLFICDICSKRFNSQAKLSRHILTHTSQKFVLRYECPVCANMFHTRWHVQMHLKSHQKEGLILEENRNAVLAMVLQNARKVPKGGSGPDTATPDVAPAVPARPGTPPSTDEQSRICNICGQVFQHFYYLEEHLKTHGSKIAVEDLDKEEEKKYTCQVCSKSFKLHYYLKLHSFTHTKEKPFICQQCGKGFITRGKLKRHLETHQGLKKYQCHICYKFFTRPSYMRIHVRTIHGTQDYNFSTYGVGVPLGLGVSVGQMDDL

Similar Transcription Factors

Sequence clustering based on sequence similarity using MMseqs2

100% Identity
-
90% Identity
-
80% Identity
-