Basic Information

Gene Symbol
FTZ-F1
Assembly
GCA_030523145.1
Location
JAQQRF010000739.1:15264-28605[+]

Transcription Factor Domain

TF Family
RXR-like
Domain
zf-C4|RXR-like
PFAM
AnimalTFDB
TF Group
Zinc-Coordinating Group
Description
DNA-binding domain of retinoid X receptor (RXR) is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. RXR functions as a DNA binding partner by forming heterodimers with other nuclear receptors including CAR, FXR, LXR, PPAR, PXR, RAR, TR, and VDR. All RXR heterodimers preferentially bind response elements composed of direct repeats of two AGGTCA sites with a 1-5 bp spacer. RXRs can play different roles in these heterodimers. RXR acts either as a structural component of the heterodimer complex, required for DNA binding but not acting as a receptor, or as both a structural and a functional component of the heterodimer, allowing 9-cis RA to signal through the corresponding heterodimer. In addition, RXR can also form homodimers, functioning as a receptor for 9-cis RA, independently of other nuclear receptors. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, RXR has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). [cite:PUB00121610], [cite:PUB00121611], [cite:PUB00121612], [cite:PUB00025660], [cite:PUB00121613], [cite:PUB00092048], [cite:PUB00092725], [cite:PUB00092726], [cite:PUB00016724], [cite:PUB00059514PMID:18971932
Hmmscan Out
# of c-Evalue i-Evalue score bias hmm coord from hmm coord to ali coord from ali coord to env coord from env coord to acc
1 1 4.6e-35 9.1e-32 111.0 0.2 2 197 536 726 535 728 0.89

Sequence Information

Coding Sequence
ATGTACGTGGAGATGGAGCAGCACTCGGGTCTTATATCGTTGAACATGTCGCCGTTTCAGCTGAGCCCACAGGGCAGTCCGCAGAGCGCCGGAGCCGGCCACCAGCAGTCCCAGCCGTCCAGCTACGGCTCGCAGTCATACTGCAACCAGAGCCCGGCCCTCGGGCCCAACCACCATGCCCAACAGGTGTCCAaccagcagcagcagcagcagtcGCAACAGCACCAGCAGCAAAACATGTCCAGCTTCGAGGCCGCCGGCTTCTTCGACGCCACGAGCCTCGAGGAGCGCTGCCCCATGTGCGGCGACAAGATGTCCGGCTACCAGTACGGGCTCCTGACCTGCGAGTCCTGCAAGGGCTTCTTCAAGAGAAACAACTCGCCCTGTAGTTATAAGAAGGTTTACACCTGTCTGTTCTCGCCCACAGGCGGCTCGCTGTCCAACCTCGACCAGCAAGCCTACCAGAGCCAGCCGCAGAACCAGCAGAACGGCGCCCAAAACAACGCGGCCGCCGCCGCGAGCGCCCCCAACCCCGCGGCCCAGGCGGCGGCCTCCAACAACTCCAACGGCGTCAACAGTGTGCCCCAAAACGTCCCCGTCCCTGGTGCCATCTGCCATCCCGGCCTCGGCCAGGTTGGCGTCGTCACCGGCTCCATCCCCGGCCCCTCGGACTTCCCCGACACCAAGGACCTCATCGAGGAGCTCTGCCCCGTCTGCGGCGACAAGGTCTCCGGCTACCACTACGGCCTCCTCACCTGCGAGTCCTGCAAGGGTTTCTTCAAGAGGACCGTGCAGAACAAGAAGGTCTACACCTGCGTCGCCGAACGTTCCTGCCACATCGACAAGACCCAGAGGAAGAGGTGTCCTTTCTGCAGGTTTCAAAAGTGCCTCGAGGTCGGCATGAAACTCGAAGCTGTGCGAGCAGACCGGATGCGAGGTGGTAGAAACAAATTCGGACCAATGTACAAGCGCGACCGGGCGCGAAAGTTGCAACTGTTGAGACAGCGTCAGTTGGCCCTGCAGACGATTCGCGGGACGCTgggcgacccgtcgaattatCCCTCGGCCGTGACGCCATTTCTGCACATCAAACAAGAAATCCAGATACCTCAGGTGTCGAGTCTAACCTCGTCTCCGGACTCATCGCCATCGCCGGCGGCCGTAGCGGTCGGCCTGGTGACAACCCAGGCGAACCCGCAAGGCGCCGGCCAGCAGCATCTAATCGCGCCATCGTCTGCGGCCGGAACCACGATCACCGGCAGCGTGACGACGGCGAGCAATCACCTGCACAACAACAACCCAAGCAACAACCCAACCCTCGACCAGAAGCTCTGGGCTGCCAACTCAACGACGAGCTCGAGTCCGAAGGGCTCGACGTTCGCGTTCGGCGAGCAGTCGAGTGCTCACCACGCGGCCCACGGCACCGCGAGCACCATGCCCGCGCCCGCCGCAGCCGCACCCTCCGCCGTCGCGGCGCTCAAAACTAGTCCCATGATCCGAGACTTTCTGTCGACGGTCGACGACCGCGAGTGGCAGGCCTCGCTCTTCGGCCTCCTCCAAAACCAGACGTACAATCAGTGCGAAGTGGATTTGTTCGAACTCATGTGTAAAGTGCTCGATCAGAATCTGTTCTCACAGGTCGACTGGGCGAGAAACTCTGTCTTCTTTAAGGATCTCAAGGTTGATGACCAGATGAAGCTCTTGCAGCACTCATGGTCCGACATGTTGGTACTAGACCATCTTCATCAAAGGCTACATAATAATCTGCCAGACGAGACAACGCTGCACAACGGTCAGAAGTTTGATCTTCTTTGCCTCGGGTTGCTTGGCGTACCTTCCTTGGCGGATCTCTTTAACGATCTATCTACAAAACTGCAGGATCTTAAATTCGACCTACCCGAATACATTTGCATGAAGTTCCTCATGCTGCTCAATCATGAGACTCGCGGtttatcgaataaaaaacACGTTCAAGAAGCCCACGAACAGGTGCAACAGGCGCTTTTAGATTACACAGTGGCCATCTATCCTTCTGTACCGGACAAATTCAACAGGTTGCTAGGAGTGCTGCCGGAGATTCACGTGGTGGCGAGTAGGGGCGAGGATCATCTGTACCAGAAGCACTGTAACGGTGGGGCGCCGACGCAGACGCTGCTTATGGAAATGCTACACGCGAAACGGAAATGA
Protein Sequence
MYVEMEQHSGLISLNMSPFQLSPQGSPQSAGAGHQQSQPSSYGSQSYCNQSPALGPNHHAQQVSNQQQQQQSQQHQQQNMSSFEAAGFFDATSLEERCPMCGDKMSGYQYGLLTCESCKGFFKRNNSPCSYKKVYTCLFSPTGGSLSNLDQQAYQSQPQNQQNGAQNNAAAAASAPNPAAQAAASNNSNGVNSVPQNVPVPGAICHPGLGQVGVVTGSIPGPSDFPDTKDLIEELCPVCGDKVSGYHYGLLTCESCKGFFKRTVQNKKVYTCVAERSCHIDKTQRKRCPFCRFQKCLEVGMKLEAVRADRMRGGRNKFGPMYKRDRARKLQLLRQRQLALQTIRGTLGDPSNYPSAVTPFLHIKQEIQIPQVSSLTSSPDSSPSPAAVAVGLVTTQANPQGAGQQHLIAPSSAAGTTITGSVTTASNHLHNNNPSNNPTLDQKLWAANSTTSSSPKGSTFAFGEQSSAHHAAHGTASTMPAPAAAAPSAVAALKTSPMIRDFLSTVDDREWQASLFGLLQNQTYNQCEVDLFELMCKVLDQNLFSQVDWARNSVFFKDLKVDDQMKLLQHSWSDMLVLDHLHQRLHNNLPDETTLHNGQKFDLLCLGLLGVPSLADLFNDLSTKLQDLKFDLPEYICMKFLMLLNHETRGLSNKKHVQEAHEQVQQALLDYTVAIYPSVPDKFNRLLGVLPEIHVVASRGEDHLYQKHCNGGAPTQTLLMEMLHAKRK

Similar Transcription Factors

Sequence clustering based on sequence similarity using MMseqs2

100% Identity
iTF_01493620;
90% Identity
iTF_01493620;
80% Identity
iTF_01492924; iTF_01492958;