Basic Information

Gene Symbol
APLF
Assembly
GCA_029955525.1
Location
JARPMR010000014.1:24385673-24401538[-]

Transcription Factor Domain

TF Family
zf-CCCH
Domain
zf-CCCH domain
PFAM
PF00642
TF Group
Zinc-Coordinating Group
Description
This entry represents C-x8-C-x5-C-x3-H (CCCH) type Zinc finger (Znf) domains. Proteins containing CCCH Znf domains include Znf proteins from eukaryotes involved in cell cycle or growth phase-related regulation, e.g. human TIS11B (butyrate response factor 1, also known as mRNA decay activator protein ZFP36L1), a probable regulatory protein involved in regulating the response to growth factors, and the mouse TTP growth factor-inducible nuclear protein, which has the same function. The mouse TTP protein is induced by growth factors. Another protein containing this domain is the human splicing factor U2AF 35kDa subunit, which plays a critical role in both constitutive and enhancer-dependent splicing by mediating essential protein-protein interactions and protein-RNA interactions required for 3' splice site selection. It has been shown that different CCCH-type Znf proteins interact with the 3'-untranslated region of various mRNA [7, 8]. This type of Znf is very often present in two copies. Zinc finger (Znf) domains are relatively small protein motifs which contain multiple finger-like protrusions that make tandem contacts with their target molecule. Some of these domains bind zinc, but many do not; instead binding other metals such as iron, or no metal at all. For example, some family members form salt bridges to stabilise the finger-like folds. They were first identified as a DNA-binding motif in transcription factor TFIIIA from Xenopus laevis (African clawed frog), however they are now recognised to bind DNA, RNA, protein and/or lipid substrates [1, 2, 3, 4, 6]. Their binding properties depend on the amino acid sequence of the finger domains and of the linker between fingers, as well as on the higher-order structures and the number of fingers. Znf domains are often found in clusters, where fingers can have different binding specificities. There are many superfamilies of Znf motifs, varying in both sequence and structure. They display considerable versatility in binding modes, even between members of the same class (e.g. some bind DNA, others protein), suggesting that Znf motifs are stable scaffolds that have evolved specialised functions. For example, Znf-containing proteins function in gene transcription, translation, mRNA trafficking, cytoskeleton organisation, epithelial development, cell adhesion, protein folding, chromatin remodelling and zinc sensing, to name but a few [5]. Zinc-binding motifs are stable structures, and they rarely undergo conformational changes upon binding their target.
Hmmscan Out
# of c-Evalue i-Evalue score bias hmm coord from hmm coord to ali coord from ali coord to env coord from env coord to acc
1 35 7.7 2.5e+04 -3.2 0.4 15 21 307 313 306 313 0.90
2 35 0.015 49 5.5 0.7 12 21 337 346 336 347 0.89
3 35 0.015 49 5.5 0.7 12 21 385 394 384 395 0.89
4 35 0.015 49 5.5 0.7 12 21 439 448 438 449 0.89
5 35 0.0092 29 6.2 0.2 12 21 493 502 492 503 0.89
6 35 0.0092 29 6.2 0.2 12 21 547 556 546 557 0.89
7 35 0.015 49 5.5 0.7 12 21 601 610 600 611 0.89
8 35 0.0092 29 6.2 0.2 12 21 655 664 654 665 0.89
9 35 0.0092 29 6.2 0.2 12 21 709 718 708 719 0.89
10 35 0.0092 29 6.2 0.2 12 21 763 772 762 773 0.89
11 35 0.0092 29 6.2 0.2 12 21 817 826 816 827 0.89
12 35 0.0092 29 6.2 0.2 12 21 871 880 870 881 0.89
13 35 0.0092 29 6.2 0.2 12 21 925 934 924 935 0.89
14 35 0.0092 29 6.2 0.2 12 21 979 988 978 989 0.89
15 35 0.0092 29 6.2 0.2 12 21 1033 1042 1032 1043 0.89
16 35 0.0092 29 6.2 0.2 12 21 1087 1096 1086 1097 0.89
17 35 0.0092 29 6.2 0.2 12 21 1141 1150 1140 1151 0.89
18 35 0.015 49 5.5 0.7 12 21 1195 1204 1194 1205 0.89
19 35 0.015 49 5.5 0.7 12 21 1249 1258 1248 1259 0.89
20 35 0.0092 29 6.2 0.2 12 21 1303 1312 1302 1313 0.89
21 35 0.015 49 5.5 0.7 12 21 1357 1366 1356 1367 0.89
22 35 0.0092 29 6.2 0.2 12 21 1411 1420 1410 1421 0.89
23 35 0.0092 29 6.2 0.2 12 21 1465 1474 1464 1475 0.89
24 35 0.0092 29 6.2 0.2 12 21 1519 1528 1518 1529 0.89
25 35 0.0092 29 6.2 0.2 12 21 1573 1582 1572 1583 0.89
26 35 0.0092 29 6.2 0.2 12 21 1627 1636 1626 1637 0.89
27 35 0.0092 29 6.2 0.2 12 21 1681 1690 1680 1691 0.89
28 35 0.015 49 5.5 0.7 12 21 1735 1744 1734 1745 0.89
29 35 0.0092 29 6.2 0.2 12 21 1789 1798 1788 1799 0.89
30 35 0.0092 29 6.2 0.2 12 21 1843 1852 1842 1853 0.89
31 35 0.015 49 5.5 0.7 12 21 1897 1906 1896 1907 0.89
32 35 0.0092 29 6.2 0.2 12 21 1951 1960 1950 1961 0.89
33 35 0.0092 29 6.2 0.2 12 21 2005 2014 2004 2015 0.89
34 35 0.0092 29 6.2 0.2 12 21 2059 2068 2058 2069 0.89
35 35 0.0092 29 6.2 0.2 12 21 2113 2122 2112 2123 0.89

Sequence Information

Coding Sequence
ATGACTATAAAGTTAGTGCGAACGGATGCAGTAGATCCTTGTAAGATTCAACTGCCTCTCGGTGAACATGTATTCGGACGAGGAAAATTACTTGAATGTGATGATAAAAGGATATCACGTCAGCATGGAAAGTTGGAAGTCAGCGATGATTCATTGACTATAACAGCGCTGCATCAAAATCCTTGTTTCTTCATAAAAAAAGGTCTGAAAAACACTGATATACTAAGACAAAACAATACAACAACTTTGTGTAATGGTGATAGATTTGGATTATTGCCAGATGCATTCTGGTATGAGGTGATATTCTGTTCTGGCAATGAAGCCCCTAGTAATGGTGATAATGAGAAAAACACAGAAGAATACTGTGTAGGAAACAATGATTGTGATTCAACTGCAGTTGAAACTAATTGcaatgaaacaaaatctgacAGTTTTCATAGTTCAGATGATGGTTTTGATAATGATATAGCTGAACTTCAAATATTAAAAGATTCAGTAACAGAGGAGACAAGTAAACCTAATGAAATTGATAAGGAAGATGAGTTAAATGTACAAAGCCAATCTATTTTACCAAATGAACCAAATGTACAAGGTGAACCAAATGTACAAAGTGAACCAAATGTACAAAGTGAACCAAATGTACAAAGTGAAGCAAATGTACAAAATGAACCCAATGTGCATGGTGAACCAAATGTACAAAATGACTCAAATGTACCATCCAATACTGAAGAACAAAATAACGAAAGCAACTCAAGTAAAAGAAGTCACAGTCCAGACAATAGTCatgtgaaaaaaatcaaaactgaACCGGCTGAAGTTAAAACTGAAAACACTGAGGATGAGAAACCTGGACCCAGTtcAGCAAATGATGGTGCGAGTGCTAACAACACCCCTAACAAACAACCTCAGCGCGAAAGATGCATGTATGGCGCTAACTGTTACAGGAAGAATCCCCAGCACCTATCACAGTTCGCGCACCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGGCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGGCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGGCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGCCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGCCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGGCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGCCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGCCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGCCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGCCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGCCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGCCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGCCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGCCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGCCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGCCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGGCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGGCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGCCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGGCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGCCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCTGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGCCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGCCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGCCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGCCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGCCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGGCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGCCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGCCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGGCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGCCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGCCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGCCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACACTACCTCTTGTAGAGATAGCCAGCCGGCCGCGCGACGCGGACTGGGGGCCGGGCGAGCGCGGCGTGTGCCCCTACGGCGCCGCCTGCGCCAAGACCGACCCGCGCCACTGGCGGGACCACGACCACCCGCCGGGGAAGGTTCCGCCGCCACGACCAGGTACGCAGGTGGTGCAGCGGCACGGCCACGTGTTCTACATCAACGCGCACACCGTCAACTTCTACGAGGACCGCTTCCAGGTCGAGGACTCGGACGGCGACAGCGTCGACTACGATTACGAGTTCTGA
Protein Sequence
MTIKLVRTDAVDPCKIQLPLGEHVFGRGKLLECDDKRISRQHGKLEVSDDSLTITALHQNPCFFIKKGLKNTDILRQNNTTTLCNGDRFGLLPDAFWYEVIFCSGNEAPSNGDNEKNTEEYCVGNNDCDSTAVETNCNETKSDSFHSSDDGFDNDIAELQILKDSVTEETSKPNEIDKEDELNVQSQSILPNEPNVQGEPNVQSEPNVQSEPNVQSEANVQNEPNVHGEPNVQNDSNVPSNTEEQNNESNSSKRSHSPDNSHVKKIKTEPAEVKTENTEDEKPGPSSANDGASANNTPNKQPQRERCMYGANCYRKNPQHLSQFAHPRDADWGPGERGVCPYGGACAKTDPRHWRDHDHPPGKVPPPRPEIASRPRDADWGPGERGVCPYGGACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGGACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGAACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGAACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGGACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGAACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGAACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGAACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGAACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGAACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGAACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGAACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGAACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGAACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGAACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGGACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGGACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGAACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGGACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGAACAKTDPRHWRDHDHPPGKVPLPRPGTLPLVEIASRPRDADWGPGERGVCPYGAACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGAACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGAACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGAACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGAACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGGACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGAACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGAACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGGACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGAACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGAACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGAACAKTDPRHWRDHDHPPGKVPPPRPGTLPLVEIASRPRDADWGPGERGVCPYGAACAKTDPRHWRDHDHPPGKVPPPRPGTQVVQRHGHVFYINAHTVNFYEDRFQVEDSDGDSVDYDYEF

Similar Transcription Factors

Sequence clustering based on sequence similarity using MMseqs2

100% Identity
-
90% Identity
-
80% Identity
-