Basic Information

Gene Symbol
-
Assembly
GCA_029955525.1
Location
JARPMR010000026.1:14671512-14684225[+]

Transcription Factor Domain

TF Family
zf-C2H2
Domain
zf-C2H2 domain
PFAM
PF00096
TF Group
Zinc-Coordinating Group
Description
The C2H2 zinc finger is the classical zinc finger domain. The two conserved cysteines and histidines co-ordinate a zinc ion. The following pattern describes the zinc finger. #-X-C-X(1-5)-C-X3-#-X5-#-X2-H-X(3-6)-[H/C] Where X can be any amino acid, and numbers in brackets indicate the number of residues. The positions marked # are those that are important for the stable fold of the zinc finger. The final position can be either his or cys. The C2H2 zinc finger is composed of two short beta strands followed by an alpha helix. The amino terminal part of the helix binds the major groove in DNA binding zinc fingers. The accepted consensus binding sequence for Sp1 is usually defined by the asymmetric hexanucleotide core GGGCGG but this sequence does not include, among others, the GAG (=CTC) repeat that constitutes a high-affinity site for Sp1 binding to the wt1 promoter [1].
Hmmscan Out
# of c-Evalue i-Evalue score bias hmm coord from hmm coord to ali coord from ali coord to env coord from env coord to acc
1 11 0.0026 0.26 13.2 0.5 1 23 648 670 648 670 0.97
2 11 4.1 4.1e+02 3.2 5.3 1 23 677 700 677 700 0.94
3 11 1.3 1.3e+02 4.7 3.3 1 23 704 726 704 726 0.95
4 11 0.0012 0.12 14.3 1.8 1 23 731 754 731 754 0.98
5 11 0.003 0.3 13.0 1.1 1 23 758 781 758 781 0.96
6 11 5.5 5.6e+02 2.8 0.1 3 21 794 812 794 817 0.88
7 11 0.035 3.5 9.7 1.0 3 23 886 906 884 907 0.94
8 11 0.098 9.8 8.3 1.1 2 20 921 939 920 942 0.91
9 11 4.7e-06 0.00047 21.9 0.7 1 23 948 970 948 970 0.99
10 11 0.0027 0.27 13.2 0.5 1 23 977 999 977 999 0.98
11 11 0.016 1.6 10.8 0.7 1 23 1006 1029 1006 1029 0.84

Sequence Information

Coding Sequence
ATGCAGTCGGTTTGGAATCAGGGTCGGAAACGGATCAGAATCAGAACGGAATCAGAATATTCAGATCAGACAGATACAATAATATATGCTACAGAAATCAGAAGCTCAAGGCCATCAGAATCCAAATCAGAATCAAAAACAGAATATTCAGATCAGACAGATACAATAATATATGCTACAGAAAACAGAATCCCAAGGCCATCAGAATCCGAATATGAATCAGAAACAGAATATTCAGATCAGACAGATACAATATATGCTACAGAAAACAGAAGCTCAAGGCCATCAGAATCCAAATCAGAATCAGAAACAGAATATTCAGATCAGACAGATACAATAATATATGCTACAGAAAACAGAATCCCAAGGCCATCAGAATCCGAATCTGAATCAGAAACAGAATATTCAGATCAGACAAATACAATATATGCTACAGAAAACAGAAGCTCAAGGCCATCAGAATCCGAATCTGAATCAGAAACAGAATATTCAGATCAGACAGATACAATATATGCTACAGAAAACAGAAGCTCAAGGCTATCAGAcagattaaataataataatcattacgCACCTCAGTATTATCGGCCTGCAGAGAAGTCGATTCATCACCTTCGATCCATAATACCACATTGTTCATCGGTCCATATGtTCTGCATGATATGCCTGGACTCTAGCACAGAAAGTAAACTGTATCCAGTCAACAAATACAGCTTGGATTTGGAGTTTAGGAATTTGACTGGAATTTTGCTAGAAGGCATGACGCACTTTAAGCCGCAGTTTTGCGTGGAGTGCGCTCAGCGGCTGAGCAACTGCGTCAAGTTCCGAGACAAGAGTCTCCGAGCCTACCACCTACTGATGGGATTGGTTAAAGATCACGAAACAGTAACAATACAGAAGATAAAGACCATAGACCGCAAAGAGAACCGATTAGTATCTAATATAGCAAAGAAATTATATTCACCTAACCACTGTGACTTTcactttgttaatgtaaacaACAATACAAAAGAGGTTCACGTTAAGAATGAGCAAAATGACACAGTTTTGGATAACGCAGGAGCGAACACAAACTGTGATATTAAATGCGAAGTAAATTTAGTGAAAGATGACATTGAAGATGcagtatttttgaaaaatgaCATTGAAAACGATATGGATGTTGACATTGGTAAAGACTCTGATGTGGATTGTTTAGGTGATGATAATGAATCGGATTTACTCAACGAATATGACAGCtatgttaattttttaaataaaaacggTAACAGTATAGAGCATACTAAAAGTCTTACAAACAACAAGAAGCTTGATAGCAATCGTAGAATCGCAAGAAGCAAAGAGGTTTTTCATAGAGAAATCAAAGTTGGCCCAAATAAACTGGTCCTCGTAAGGGCCAAGCTTGGCAAAACCAAAAATCGAAACAATGGGAGGCCAAGAAATACAAAAAGACTTGTCGAGCccaaaattgaaaatgaaaatgtcgTTATTATGGACGAAGAtgaagttagtataaaaaatgaAGAGTCTAAAGTTACTGCAGAAGTAACTTCAAAACCGAAACCTACTAAAAAAGTTAGCGAAAGAATAGTACCTGTAAAGAATAGAGCAAATCTAGCTAAACTAAAAAAGCGAGATAGAAGTAAAGCTAATCTAAAGAACGCAGTTAGAGACAGAACCAAGCGAATTGAAAAAGAAACTCAGGTTAGTGTTAAAAAGAAACCTGTTAAAAGAGCTTCTACTAACGAGGGTGATACAAGAAAGGTTGTGGTCAAAAGAGTTAAGAAAAAACGGGTTTATATCCCAACTGGGAACCCACCGGGACCTAAACCAGGTTTTAAATCAGAATTAAAGCTGTTCGAAACAACTGAGCTTTCACATGAAGAGCAAATAGCTGAAGTACAGGCGAGAAAGGAGACGGAAAGGTACAGGAACGCCCTGTTCAAGTGTACCATATGTTTCAAAGGCTTCAGAGATGTGGACGCTTACAATGGGCATTTGGACAGACATACTGATaaatatGGTCCTTTCGAATGCGCATTTTGCCGCCTCCACTCCAAGGACAAGCACGCCCTGTGCAACCACCTCGCGAACAACCACAACTACGTGTACAGGTGCAGGGAGTGCGGCTTCGTGACCAAACACCGGCATGTGGCGTCCAACCACGAGCGCTGGCACGACGGCAAGACGTACAAGTGTCCGCACTGCGACGAGCAGTTCATGAAAAGCACTTCGGTGATGTCCCACGTGCGTATAAAGCACCCTTCAGACCACGTGTGCACGCAGTGCGGTTTCTCGTTCATCGGCGAGAGAGGTCTGAATTTGCACATGAGCAAGAAGCATCGCCTCGAAGACACGAAGaatttGACCGGTCCGCTGTGCGAGCCCTGCAACATTCGCTTCGCTTCGGACACGGCTTACAAGCAGCACATGGAGGTGTCGCCCAAACACGCGCCCGCCAGCAAGCTGAAACCCAACTGCCCCATACAGAAGTACGCGTGGCATCTCATGAAGAAGAATAAAGAAGACTACAAGCAGCACATGGAGGTGTCGCCCAAACACGCGCCCGCCAGCAAGCTGAAACCCAACTGCCCCATACAGAAGTACGCGTGGCATCTCATGAAGAAGAATAAAGAAGGTGAAATGTCCATAGACTGCGAACAGTGTGGTGTGAACCTGAGCAACGCGCGTCAATACACCATACATTTCCGCAAGCACCATCCGGACAAGAACAGAACCCAGTTCCCCAAGGCCAAGGTGATGTGCGAACAGTGCGGAAAAGTTTTCAAGTGCATGACCGAGCTGAAGTACCACATGCCGCTCCACGCGGACAAGAAGCAGTTCACGTGCGAGATATGCAACAAGAGCTTCGGCCGCATACTGAACCTCAAGATACACCTGCGCACGCACAGCGACACCAGGCCCAAGTACGAGTGCACCGTGTGCGGGAAGACGTACCTGAACCTGTGGGGCAAGATGCGGCACATGCGGTCACATCAAGACACGAGGCCCTACTACACGTGTGACGTTTGCGAGAAAACCTTCACGAGTCCCCAAGGGAGGGACTCCCATGTGCTACATGTTCATAACAACGTGCCCCGGCCCAAAAGGATCCGCGGTCCCCGGTCCACTCCCAGGCAACATGCGCGGTACACCAGTGACTCGCAGGACTCTTGA
Protein Sequence
MQSVWNQGRKRIRIRTESEYSDQTDTIIYATEIRSSRPSESKSESKTEYSDQTDTIIYATENRIPRPSESEYESETEYSDQTDTIYATENRSSRPSESKSESETEYSDQTDTIIYATENRIPRPSESESESETEYSDQTNTIYATENRSSRPSESESESETEYSDQTDTIYATENRSSRLSDRLNNNNHYAPQYYRPAEKSIHHLRSIIPHCSSVHMFCMICLDSSTESKLYPVNKYSLDLEFRNLTGILLEGMTHFKPQFCVECAQRLSNCVKFRDKSLRAYHLLMGLVKDHETVTIQKIKTIDRKENRLVSNIAKKLYSPNHCDFHFVNVNNNTKEVHVKNEQNDTVLDNAGANTNCDIKCEVNLVKDDIEDAVFLKNDIENDMDVDIGKDSDVDCLGDDNESDLLNEYDSYVNFLNKNGNSIEHTKSLTNNKKLDSNRRIARSKEVFHREIKVGPNKLVLVRAKLGKTKNRNNGRPRNTKRLVEPKIENENVVIMDEDEVSIKNEESKVTAEVTSKPKPTKKVSERIVPVKNRANLAKLKKRDRSKANLKNAVRDRTKRIEKETQVSVKKKPVKRASTNEGDTRKVVVKRVKKKRVYIPTGNPPGPKPGFKSELKLFETTELSHEEQIAEVQARKETERYRNALFKCTICFKGFRDVDAYNGHLDRHTDKYGPFECAFCRLHSKDKHALCNHLANNHNYVYRCRECGFVTKHRHVASNHERWHDGKTYKCPHCDEQFMKSTSVMSHVRIKHPSDHVCTQCGFSFIGERGLNLHMSKKHRLEDTKNLTGPLCEPCNIRFASDTAYKQHMEVSPKHAPASKLKPNCPIQKYAWHLMKKNKEDYKQHMEVSPKHAPASKLKPNCPIQKYAWHLMKKNKEGEMSIDCEQCGVNLSNARQYTIHFRKHHPDKNRTQFPKAKVMCEQCGKVFKCMTELKYHMPLHADKKQFTCEICNKSFGRILNLKIHLRTHSDTRPKYECTVCGKTYLNLWGKMRHMRSHQDTRPYYTCDVCEKTFTSPQGRDSHVLHVHNNVPRPKRIRGPRSTPRQHARYTSDSQDS

Similar Transcription Factors

Sequence clustering based on sequence similarity using MMseqs2

100% Identity
-
90% Identity
-
80% Identity
-