Lstr035454.1
Basic Information
- Insect
- Lathronympha strigana
- Gene Symbol
- Hr78_1
- Assembly
- GCA_949128165.1
- Location
- OX421922.1:11824001-11859229[-]
Transcription Factor Domain
- TF Family
- RXR-like
- Domain
- zf-C4|RXR-like
- PFAM
- AnimalTFDB
- TF Group
- Zinc-Coordinating Group
- Description
- DNA-binding domain of retinoid X receptor (RXR) is composed of two C4-type zinc fingers. Each zinc finger contains a group of four Cys residues which co-ordinates a single zinc atom. RXR functions as a DNA binding partner by forming heterodimers with other nuclear receptors including CAR, FXR, LXR, PPAR, PXR, RAR, TR, and VDR. All RXR heterodimers preferentially bind response elements composed of direct repeats of two AGGTCA sites with a 1-5 bp spacer. RXRs can play different roles in these heterodimers. RXR acts either as a structural component of the heterodimer complex, required for DNA binding but not acting as a receptor, or as both a structural and a functional component of the heterodimer, allowing 9-cis RA to signal through the corresponding heterodimer. In addition, RXR can also form homodimers, functioning as a receptor for 9-cis RA, independently of other nuclear receptors. Like other members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors, RXR has a central well conserved DNA binding domain (DBD), a variable N-terminal domain, a flexible hinge and a C-terminal ligand binding domain (LBD). [cite:PUB00121610], [cite:PUB00121611], [cite:PUB00121612], [cite:PUB00025660], [cite:PUB00121613], [cite:PUB00092048], [cite:PUB00092725], [cite:PUB00092726], [cite:PUB00016724], [cite:PUB00059514PMID:18971932
- Hmmscan Out
-
# of c-Evalue i-Evalue score bias hmm coord from hmm coord to ali coord from ali coord to env coord from env coord to acc 1 34 0.6 3e+03 -0.9 0.0 1 27 258 284 258 287 0.93 2 34 0.6 3e+03 -0.9 0.0 1 27 293 319 293 322 0.93 3 34 0.6 3e+03 -0.9 0.0 1 27 328 354 328 357 0.93 4 34 0.6 3e+03 -0.9 0.0 1 27 363 389 363 392 0.93 5 34 0.6 3e+03 -0.9 0.0 1 27 398 424 398 427 0.93 6 34 0.6 3e+03 -0.9 0.0 1 27 433 459 433 462 0.93 7 34 0.6 3e+03 -0.9 0.0 1 27 468 494 468 497 0.93 8 34 0.6 3e+03 -0.9 0.0 1 27 503 529 503 532 0.93 9 34 0.6 3e+03 -0.9 0.0 1 27 538 564 538 567 0.93 10 34 0.6 3e+03 -0.9 0.0 1 27 573 599 573 602 0.93 11 34 0.38 1.9e+03 -0.2 0.0 1 28 608 635 608 642 0.90 12 34 0.6 3e+03 -0.9 0.0 1 27 643 669 643 672 0.93 13 34 0.6 3e+03 -0.9 0.0 1 27 678 704 678 707 0.93 14 34 0.6 3e+03 -0.9 0.0 1 27 713 739 713 742 0.93 15 34 0.6 3e+03 -0.9 0.0 1 27 748 774 748 777 0.93 16 34 0.6 3e+03 -0.9 0.0 1 27 783 809 783 812 0.93 17 34 0.6 3e+03 -0.9 0.0 1 27 818 844 818 847 0.93 18 34 0.6 3e+03 -0.9 0.0 1 27 853 879 853 882 0.93 19 34 0.6 3e+03 -0.9 0.0 1 27 888 914 888 917 0.93 20 34 0.6 3e+03 -0.9 0.0 1 27 923 949 923 952 0.93 21 34 0.6 3e+03 -0.9 0.0 1 27 958 984 958 987 0.93 22 34 0.6 3e+03 -0.9 0.0 1 27 993 1019 993 1022 0.93 23 34 0.6 3e+03 -0.9 0.0 1 27 1028 1054 1028 1057 0.93 24 34 0.6 3e+03 -0.9 0.0 1 27 1063 1089 1063 1092 0.93 25 34 0.6 3e+03 -0.9 0.0 1 27 1098 1124 1098 1127 0.93 26 34 0.6 3e+03 -0.9 0.0 1 27 1133 1159 1133 1162 0.93 27 34 0.6 3e+03 -0.9 0.0 1 27 1168 1194 1168 1197 0.93 28 34 0.6 3e+03 -0.9 0.0 1 27 1203 1229 1203 1232 0.93 29 34 0.6 3e+03 -0.9 0.0 1 27 1238 1264 1238 1267 0.93 30 34 0.6 3e+03 -0.9 0.0 1 27 1273 1299 1273 1302 0.93 31 34 0.6 3e+03 -0.9 0.0 1 27 1308 1334 1308 1337 0.93 32 34 0.6 3e+03 -0.9 0.0 1 27 1343 1369 1343 1372 0.93 33 34 0.65 3.3e+03 -1.0 0.0 1 27 1378 1404 1378 1406 0.93 34 34 8.3e-30 4.2e-26 93.3 0.1 1 196 1413 1622 1413 1624 0.85
Sequence Information
- Coding Sequence
- ATGGATGGCCAGGACCAGATGGAGATGAAATTCAGCGGAGGCAGCGAAGTCGGCGGGATGGAGCTCTGCATTGTGTGCGGAGACCGAGCATCTGGGAGACACTATGGCGCTATCAGCTGTGAAGGTTGCAAAGGCTTCTTCAAACGCAGCATCCGCAAGAAGCTCGGCTACCAATGTCGGGGCAGCATGAACTGCGAGGTGACCAAGCACCACCGTAACAGGTGCCAGTACTGCCGGTTGCAGAAGTGTTTGGCCTGCGGCATGAGGAGCGACTCGGTCCAGCACGAACGGAAGCCGATCGTGGACAAAGTGAAACCCGAGCGGGGAGAGGGTCTTCACGAGCGGCAGGCGTATTCTAAGCTGTTGGGATTGGCTGGCCAGCAGGGACCGATAAATCCGAAGGAGGAGCCGGGAGAGTtcggcgcggcgccggcgcccgccaTCAACTTCGCGCTGGCCGCCGCCGTCGCCTTCAACAAGGGCAACCCAGTGCCGGGGTACCTGGGCGCCGGCGACGTGGAGGGCGCGCGGCGCCAGCAGCTGCTGCTGCAGACGCAGCTCGCCAAGAACCTCTTCAAGATGGGGCAGTTCGGAGCCATCAACGAGTACCTGCAGTCGGCGTACGCGGCCCCGGAGGCGCCGCAACTGCCGCAAGCCGACGCTCCACAGCCAGAAGTAGCGGACCCGTCGGCCGTCCTGTGCACGGCGGAGTCGCTGGCGCTGCAGCTGGCGCTGCCGGCGGGCGCGCCGCCGCACCTGCGCCTGCACGCCGtgtgcgaggcgggcgcgcgcctgctggccgcgctcagccgctggctgctggccgtgcccgccgccagagccttacccacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagccgctggctgctggccgtgcccgccgccagagccttacccacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagccgctggctgctggccgtgcccgccgccagagccttacccacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagccgctggctgctggccgtgcccgccgccagagccttacccacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagccgctggctgctggccgtgcccgccgccagagccttacccacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagccgctggctgctggccgtgcccgccgccagagccttacccacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagccgctggctgctggccgtgcccgccgccagagccttacccacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagccgctggctgctggccgtgcccgccgccagagccttacccacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagccgctggctgctggccgtgcccgccgccagagccttacccacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagccgctggctgctggccgtgcccgccgccagagccttacccacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagccgctggctgctggccgtgcccgccgccagagccttacccacaggagtgcacctgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagccgctggctgctggccgtgcccgccgccagagccttacccacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagccgctggctgctggccgtgcccgccgccagagccttacccacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagcCGCTGGCTGCTGGCCGTGCCCGCCGCCAGAGCCTTACCcacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagccgctggctgctggccgtgcccgccgccagagccttacccacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagccgctggctgctggccgtgcccgccgccagagccttacccacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagcCGCTGGCTGCTGGCCGTGCCCGCCGCCAGAGCTTTACCcacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagcCGCTGGCTGCTGGCCGTGCCCGCCGCCAGAGCTTTACCcacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagccgctggctgctggccgtgcccgccgccagagccttacccacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagcCGCTGGCTGCTGGCCGTGCCCGCCGCCAGAGCTTTACCcacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagccgctggctgctggccgtgcccgccgccagagccttacccacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagcCGCTGGCTGCTGGCCGTGCCCGCCGCCAGAGCTTTACCcacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagccgctggctgctggccgtgcccgccgccagagccttacccacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagcCGCTGGCTGCTGGCCGTGCCCGCCGCCAGAGCTTTACCcacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagcCGCTGGCTGCTGGCCGTGCCCGCCGCCAGAGCTTTACCcacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagcCGCTGGCTGCTGGCCGTGCCCGCCGCCAGAGCTTTACCcacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagccgctggctgctggccgtgcccgccgccagagccttacccacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagcCGCTGGCTGCTGGCCGTGCCCGCCGCCAGAGCTTTACCcacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagccgctggctgctggccgtgcccgccgccagagccttacccacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagcCGCTGGCTGCTGGCCGTGCCCGCCGCCAGAGCTTTACCcacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagccgctggctgctggccgtgcccgccgccagagccttacccacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagccgctggctgctggccgtgcccgccgccagagccttacccacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagccgctggctgctggccgtgcccgccgccagagccttacccacaggagtgcacccgcgcctgcacgccgtgtgcgaggcgggcgcgcgcctgctggccgcgctcagcCGCTGGCTGCTGGCCGTGCCCGCCGCCAGAGCCTTACCATTTGAGATCCAAGTGACGCTCCTCAAGAAATGCTGGCCGGAGCTCTTCGTGCTGGGTCTAGCCAAGTTCTCCGCCGCGCTGCAGCTGACTGCCCTGCTGCCGCAGATGGTGGCGCATCTCCAGGCGGTGCTGAGGGAGCGAGCCGGCAATACCGAGTGCGAGCGAGAGCGCGGCGCTGAGATAACCACAGCGGATTATTCCGACGAGCGAGTGTCGGAAGTGAGCAGCATGCTGTCTCGCTTGCAACAATACATCGGCAACATGGAGCAGCTGCGAGTGAGCGAGAGGGAACATGCGCATTTACGAGCGCTGTGCCTGTTTTCACCAGACGGCGCCCCAGACTTCCTAACCAAGAAGCTCCAAGAGCTCCAATCGTCCGTCCTTCGTTCCCTCCGCGCGCTATGCGCGTCAGACGAGGACCGCTGCGCGACCATCCTGCTCCAACTGCCGGTGCTCCGCGCGTTCACGGGACCCTTTCTTGAGGATGTGTTCTTTGTAGGATTTGTAGGTGATGTCAGCATCGATGACGTCGTGCCGTATTTACTGAACGCGGAGCGCTGA
- Protein Sequence
- MDGQDQMEMKFSGGSEVGGMELCIVCGDRASGRHYGAISCEGCKGFFKRSIRKKLGYQCRGSMNCEVTKHHRNRCQYCRLQKCLACGMRSDSVQHERKPIVDKVKPERGEGLHERQAYSKLLGLAGQQGPINPKEEPGEFGAAPAPAINFALAAAVAFNKGNPVPGYLGAGDVEGARRQQLLLQTQLAKNLFKMGQFGAINEYLQSAYAAPEAPQLPQADAPQPEVADPSAVLCTAESLALQLALPAGAPPHLRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHLRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPTGVHPRLHAVCEAGARLLAALSRWLLAVPAARALPFEIQVTLLKKCWPELFVLGLAKFSAALQLTALLPQMVAHLQAVLRERAGNTECERERGAEITTADYSDERVSEVSSMLSRLQQYIGNMEQLRVSEREHAHLRALCLFSPDGAPDFLTKKLQELQSSVLRSLRALCASDEDRCATILLQLPVLRAFTGPFLEDVFFVGFVGDVSIDDVVPYLLNAER
Similar Transcription Factors
Sequence clustering based on sequence similarity using MMseqs2
- 100% Identity
- -
- 90% Identity
- -
- 80% Identity
- -