Basic Information

Gene Symbol
Rreb1
Assembly
GCA_025727935.1
Location
JAOSYY010025485.1:37256-52324[-]

Transcription Factor Domain

TF Family
zf-C2H2
Domain
zf-C2H2 domain
PFAM
PF00096
TF Group
Zinc-Coordinating Group
Description
The C2H2 zinc finger is the classical zinc finger domain. The two conserved cysteines and histidines co-ordinate a zinc ion. The following pattern describes the zinc finger. #-X-C-X(1-5)-C-X3-#-X5-#-X2-H-X(3-6)-[H/C] Where X can be any amino acid, and numbers in brackets indicate the number of residues. The positions marked # are those that are important for the stable fold of the zinc finger. The final position can be either his or cys. The C2H2 zinc finger is composed of two short beta strands followed by an alpha helix. The amino terminal part of the helix binds the major groove in DNA binding zinc fingers. The accepted consensus binding sequence for Sp1 is usually defined by the asymmetric hexanucleotide core GGGCGG but this sequence does not include, among others, the GAG (=CTC) repeat that constitutes a high-affinity site for Sp1 binding to the wt1 promoter [1].
Hmmscan Out
# of c-Evalue i-Evalue score bias hmm coord from hmm coord to ali coord from ali coord to env coord from env coord to acc
1 10 0.031 2.2 9.2 1.8 2 23 196 217 195 218 0.94
2 10 0.017 1.2 10.0 2.1 2 21 225 244 224 246 0.93
3 10 0.00087 0.06 14.1 0.2 1 23 252 275 252 275 0.96
4 10 0.026 1.8 9.4 0.2 1 23 281 303 281 303 0.97
5 10 1.2e-05 0.00086 19.9 0.2 1 23 311 334 311 334 0.95
6 10 8.1e-05 0.0056 17.3 0.9 1 23 340 362 340 362 0.99
7 10 1.7e-05 0.0012 19.4 4.7 1 23 368 391 368 391 0.97
8 10 0.0047 0.32 11.8 0.3 1 22 406 427 406 428 0.86
9 10 0.00096 0.066 13.9 0.1 2 23 434 455 433 455 0.97
10 10 0.011 0.77 10.6 1.0 1 21 461 481 461 484 0.89

Sequence Information

Coding Sequence
ATGGAAAAAAGAAAAGAATCTATATCTAGGACGAGGATGTGTCGGTTTTGTTTAAGCCAAACAACTCCCTTGAAGAGCCTGTATGAGAGAAATCGAACAAATAATGAAAATATGTCTTTAAAGTTTAAAGTTTTATCTTGTCTTTCCTATGAGGTATTCCCTTCAGACAAAATGCCCACATACATTTGTGAACGATGCAAGTTCTTCATGAATACATTTTATGAATTCAAGAAAATATGTCGACAGTCAGAGGAATTTGTTCTTAAGTTTGTCCGTAGTGGAACTCCGTTTGAACCTTTGCCTTGGCCCAAAACATTGTCAAAAGTATATGAAAGTGCAAAGAATATAGTAAAAACTGTCGTTGAGGGTGGTACTACAATTCAAGTTTTATCTCAGGACACATCAGAGAGTGAAGATGATGATGATGCTAATATTTATAATATTCAGATAGGTGATGATGAAGAAGTGAAGACAACTCAAATAAAAGTAGTCACAGCTAACAGTGATGCAGAAGATTCCAAAAAGTTAAAAAAAGATGATGTAGTAGTGAAGGGCGAAGTGGAGCGCGCAGGGGAGGAGTGCTGGCCCTGCGACGAATGTCACCGGACGTACCCCCTTGAACAATTGCTCACTCTGCATAAGATGCGACACCACGATAGACCGAAGACCGTCCAATGCGACTTCTGTGATGCAAAATTCTTCTCCAAATCCGATTTGAGCGTACATCAATTATGTCATTCCAATGAAGAACCTTTCCAATGTGCTGCGTGTGGAGTAAAATTCAAAAGACTAATACTTCTCAAGAGACATGAGAGGTTAGTTCATTCTGACTTGCCGCAACATAGATGTCCAAGCTGCCCTGCCTCGTTTCTTTCTATAGACGACTTGACAGTGCATCAGGAAAGACATTCACGAATTAACGAACGTAATTTTGTATGCGAAATTTGTGATAAAGCATTCTCCGTAAAATCTACACTAGACAGACACAAAGCTATGTTACATAACAGAGAGCCGGAGTTCAAATGCGAGTATTGCCCGGAGCAATTCGGTTCAGTACAGAAGCTCTCGCGTCATTTGCGGACGCACGCGGGTAAGCGGCCTTATCCTTGCAAGTTTTGTGATAAGAGTTTCATCAAATCTCAACATTTTACAAGACATTTGCGTGTGAAGCATCGTGACGAAATGCCCGCGATGAATTCGAGCGACGCTGAGTCGTACCGGTGTGAGCAGTGCGAAGAAACCTTCAATACTCAAGATGAGCTGATCTTCCACTCAGCTATACACGCCACGCAGAACCTCACTTGCCCTCTTTGCCAGGAGAAGTTCGATAACGTAGATGACGTCACCGCTCACATCAAATCGCATGTTAATGGTGTAGAATTCATGTGTGACTTTTGTGAACTTGTGTTCACTACCAAGGAGAAGTATGAGAACCATTTTATATTCGCTCATGAAGAGGAAATGCAGAATGAATTGGACGAACATTCATCCTTCGAAATGGACGAAGAAGACGATGTCGTGGAGACGGGAATACACGTAAAAGAGGATGGTGATGAAATGGTGATTGAGATGGAAAAGTTCGAAGCTGACAACTTCATGAGGTCCGAAAATACTACTGCAGAATATGAAATGAAGAATGACCAAACTAATTCTGAAGGAAGCGAAATTGAATCTCCATGCCCCGAATCGGTCATAGATACGCCAGTAGTGACTAAAATCGCTGAACAGCCAGTCATAGACAAAATGGAAAAGATCAAAGAGCCGAGTCAAACGGAAATGTTGACAGTACGCGCTTCTCCGATAGTTAAATCATCCCAGATCACTGTATTGTCAAATCAAGTGTTGCCAGCTTCCACGGCGACCGTATTGTTAACAGAATCGAAAGTAATAAAACCACCAACCATCAAAACTAGTGATAATCAGTCCATGGTTGTCATACGTAAAGGGGACGACATCAAACGGAAACTCCAACAAATAAGTGATATCCAACCAGTAAAAAAAGAAAAGCTAAATAAGGTAGAAAGTAATGGCGCTGGATTCAGTGATAAATCTCTACGACTTTTAGAAAAGGAATTGCAAGATCTTAAAAGGACAAATACGCGTTCAGACGGAAGCAAAATAGCACCCGCTAAGACCGCAGATGTCTCAAAACCCAGACGAGCACAACTCATTACAGGACCTAAGTTAAGAATATCTGATGAGAAAAAGCAAATACCAAATAAATCACCGGCGATAGAGAAAAAATTCGAGCGACGTGTTACAAAAGAGAATAAAGAGCCCTCCGTAAAAGAAGGAAAGAACATTGACAGTAATAAAGACGAAGAAAGGAAAGAGAAAGAGATTAAAGAGTTACCAAAGAGTGTAATAAAGAATGGTGCTAACGAAAAGAGTAGCAATGAAGAGGTAATACGACGTTCGTCACGTCCGTCACGTGTGAGGGATTACGCCAAAATGGTCAATGATCATTCGAAAGACAACTCTGACGAAGACGAGGACAGCGATACAGAGGAGGACGACGAGGAATACAGAGAAGCTAATATTTCAGAGACACGGTCAAAGCGACGAACAAGTTTGAAAATGAAGTCTCCAGCTGTAGTGTCACCGGCGCCGGCGACTCCCGCGGCCACACCCACTCCCAGAAAAAGAGGAAGGCCCCGTAAAGATGCCCACAAAGAAGTACCAGAGAAAGTCAGAAAAGATGAAATTGCAAGCAACGATAGTTCCAGTCAACAAGATACCGAGGAAAAGTCGAATATCGAAAAGAAATCTGAGAAAAGTACCACAGCTTTGACTTCGACTAAAGCAGAAACTATTGTAAGCGAAAAGTTACCATCGGATGATGTCATTCTGTCTCCTACGGGTCAAACGTTGAAAAAGGTGCCAATTAAAGCACTACCTCCAGGAGTGAAGCCAATGCCGTTACCAATGAATGCTAGACCTATGGGCCAAGCTGAACTATGTGAAATGCAAATAGGCAAGAAAGTTGTGAAAGTACAGAAGATCGTTATGACCAAGGCGGATGTAGAGGCTATGGCTAAGAAGGGCCTCCTGGAAATGAAGGACGGTACAATGGTTTTGAAGCAGGGTATTAAGCTGCCGACACCAACGAAAGATATTAAAGACACGCCTAAGAAAGATAAAGGCGCACCGACTCGGTGTGATATTGGGGACGATTAA
Protein Sequence
MEKRKESISRTRMCRFCLSQTTPLKSLYERNRTNNENMSLKFKVLSCLSYEVFPSDKMPTYICERCKFFMNTFYEFKKICRQSEEFVLKFVRSGTPFEPLPWPKTLSKVYESAKNIVKTVVEGGTTIQVLSQDTSESEDDDDANIYNIQIGDDEEVKTTQIKVVTANSDAEDSKKLKKDDVVVKGEVERAGEECWPCDECHRTYPLEQLLTLHKMRHHDRPKTVQCDFCDAKFFSKSDLSVHQLCHSNEEPFQCAACGVKFKRLILLKRHERLVHSDLPQHRCPSCPASFLSIDDLTVHQERHSRINERNFVCEICDKAFSVKSTLDRHKAMLHNREPEFKCEYCPEQFGSVQKLSRHLRTHAGKRPYPCKFCDKSFIKSQHFTRHLRVKHRDEMPAMNSSDAESYRCEQCEETFNTQDELIFHSAIHATQNLTCPLCQEKFDNVDDVTAHIKSHVNGVEFMCDFCELVFTTKEKYENHFIFAHEEEMQNELDEHSSFEMDEEDDVVETGIHVKEDGDEMVIEMEKFEADNFMRSENTTAEYEMKNDQTNSEGSEIESPCPESVIDTPVVTKIAEQPVIDKMEKIKEPSQTEMLTVRASPIVKSSQITVLSNQVLPASTATVLLTESKVIKPPTIKTSDNQSMVVIRKGDDIKRKLQQISDIQPVKKEKLNKVESNGAGFSDKSLRLLEKELQDLKRTNTRSDGSKIAPAKTADVSKPRRAQLITGPKLRISDEKKQIPNKSPAIEKKFERRVTKENKEPSVKEGKNIDSNKDEERKEKEIKELPKSVIKNGANEKSSNEEVIRRSSRPSRVRDYAKMVNDHSKDNSDEDEDSDTEEDDEEYREANISETRSKRRTSLKMKSPAVVSPAPATPAATPTPRKRGRPRKDAHKEVPEKVRKDEIASNDSSSQQDTEEKSNIEKKSEKSTTALTSTKAETIVSEKLPSDDVILSPTGQTLKKVPIKALPPGVKPMPLPMNARPMGQAELCEMQIGKKVVKVQKIVMTKADVEAMAKKGLLEMKDGTMVLKQGIKLPTPTKDIKDTPKKDKGAPTRCDIGDD

Similar Transcription Factors

Sequence clustering based on sequence similarity using MMseqs2

100% Identity
-
90% Identity
-
80% Identity
-