Basic Information

Gene Symbol
king-tubby2
Assembly
GCA_949316265.1
Location
OX438889.1:15935586-15946589[+]

Transcription Factor Domain

TF Family
Tub
Domain
Tub domain
PFAM
PF01167
TF Group
Unclassified Structure
Description
Tubby, an autosomal recessive mutation, mapping to mouse chromosome 7, was recently found to be the result of a splicing defect in a novel gene with unknown function. This mutation maps to the tub gene [3, 4]. The mouse tubby mutation is the cause of maturity-onset obesity, insulin resistance and sensory deficits. By contrast with the rapid juvenile-onset weight gain seen in diabetes (db) and obese (ob) mice, obesity in tubby mice develops gradually, and strongly resembles the late-onset obesity observed in the human population. Excessive deposition of adipose tissue culminates in a two-fold increase of body weight. Tubby mice also suffer retinal degeneration and neurosensory hearing loss. The tripartite character of the tubby phenotype is highly similar to human obesity syndromes, such as Alstrom and Bardet-Biedl. Although these phenotypes indicate a vital role for tubby proteins, no biochemical function has yet been ascribed to any family member [2], although it has been suggested that the phenotypic features of tubby mice may be the result of cellular apoptosis triggered by expression of the mutated tub gene. TUB is the founding-member of the tubby-like proteins, the TULPs. TULPs are found in multicellular organisms from both the plant and animal kingdoms. Ablation of members of this protein family cause disease phenotypes that are indicative of their importance in nervous-system function and development [1]. Mammalian TUB is a hydrophilic protein of ~500 residues. The N-terminal (IPR005398) portion of the protein is conserved neither in length nor sequence, but, in TUB, contains the nuclear localisation signal and may have transcriptional-activation activity. The C-terminal 250 residues are highly conserved. The C-terminal extremity contains a cysteine residue that might play an important role in the normal functioning of these proteins. The crystal structure of the C-terminal core domain from mouse tubby has been determined to 1.9A resolution. This domain is arranged as a 12-stranded, all anti-parallel, closed β-barrel that surrounds a central α helix, (which is at the extreme carboxyl terminus of the protein) that forms most of the hydrophobic core. Structural analyses suggest that TULPs constitute a unique family of bipartite transcription factors [2].
Hmmscan Out
# of c-Evalue i-Evalue score bias hmm coord from hmm coord to ali coord from ali coord to env coord from env coord to acc
1 13 4.1e-30 5.9e-26 93.3 0.0 3 124 161 271 159 276 0.85
2 13 1.3e-11 1.8e-07 32.8 0.0 58 124 277 331 271 335 0.77
3 13 1.2e-11 1.7e-07 32.8 0.0 58 124 337 391 332 397 0.78
4 13 1.3e-11 1.9e-07 32.7 0.0 58 124 397 451 393 456 0.77
5 13 1.2e-11 1.8e-07 32.8 0.0 58 124 457 511 453 517 0.78
6 13 1.2e-11 1.8e-07 32.8 0.0 58 124 517 571 512 576 0.77
7 13 1.4e-11 2e-07 32.6 0.0 58 124 577 631 573 635 0.77
8 13 1.3e-11 1.9e-07 32.7 0.0 58 124 637 691 633 696 0.77
9 13 9.5e-12 1.4e-07 33.1 0.0 58 124 697 751 691 757 0.78
10 13 7.6e-12 1.1e-07 33.5 0.0 56 124 755 811 751 816 0.77
11 13 9.9e-12 1.4e-07 33.1 0.0 58 124 817 871 812 877 0.78
12 13 8.1e-12 1.2e-07 33.4 0.0 56 124 875 931 872 936 0.77
13 13 2.5e-11 3.6e-07 31.8 0.0 58 104 937 983 932 998 0.79

Sequence Information

Coding Sequence
ATGGCTTCAATGCGGGATCAAAAAATCGAACAGCAACGCCAACTGATGGAACAGAAAATGAAACAGAAACGCCAAAATTCTGGTATGGTCCAAGCAAATGATCTAAGGGTAGGGTCTGCAAAACGTCCAATATCAGGCAGCCGTTCCCGCGAACTACATGGCTATGATGGCCCGATGCAATTTCTTATGTCGCCAGTCAATCCGGACCAAGTAATACCCCTCCAAACCAATAGAATATCAACATATGATGAGCTAGGAAATCAAATAGAAGTGCTGACTGTGGGTGAAGGGGACGGGAGTGGGGAGGAAGACGACGAAAGCGTTCCAGTCTGCAGTGTCGGGAGGGAAGCAAGTACTGATGATGTATGTGCTGATGCCGCTGTGGCACCGCTCCATGATAAACCGAGGAGAGATAGCTCGCCTAGTCAGACAGCAGAAATAGAAGGCTCAGTGGAAGGTGCAGTCGAAACGTTCGTGGTGACTCCAGCGAAACACGGCACGCTATATAAATGTCGCATAGCTCGCGATCGCAAGGGAATGGACAGAGGCCTTTATCCTACCTACTTCTTGCATCTAGAAAAGGATTATGGGAAGAAAGTGTTTTTGCTGGCTGCCCGCAAACGCAAGAAATCCGCCACATCAAATTACCTAATATCGACGGACCCCACCGAACTAACGCGCACAGCTGACAGCTTCGCCGGCAAGCTGCGCTCCAATCTACTAGGGACTGCGTTCACTGTGTATGATAACGGCAAGGCGTGGAGGAAGCACGACCATGCTCACACCAGGCACGAGTTGGCAGCTGTTGTTTATGTAAGTATTAGTTGTCTAATATCGACGGACCCCACCGAACTAACGCGCACAGCTGACAGCTTCGCCGGCAAGCTGCGCTCCAATCTACTGGGGACTGCGTTCACTGTGTATGATAACGGCAAGGCGTGGAGGAAGCACGACCATGCTCACACCAGGCACGAGTTGGCAGCTGTTGTTTATGTAAGTATTAGTTGTCTAATATCGACGGACCCCACCGAACTAACGCGCACAGCTGACAGCTTCGCCGGCAAGCTGCGCTCCAATCTACTGGGGACTGCGTTCACTGTGTATGATAACGGCAAGGCGTGGAGGAAGCACGACCATGCTCACACCAGGCACGAGTTGGCAGCTGTTGTTTATGTAAGTATTAGTTGTCTAATATCGACGGACCCCACCGAACTAACGCGCACAGCTGACAGCTTCGCCGGCAAGCTGCGCTCCAATCTACTGGGGACTGCGTTCACTGTGTATGATAACGGCAAGGCGTGGAGGAAGCACGACCATGCTCACACCAGGCACGAGTTGGCAGCTGTTGTTTATGTAAGTATTAGTTGTCTAATATCGACGGACCCCACCGAACTAACGCGCACAGCTGACAGCTTCGCCGGCAAGCTGCGCTCCAATCTACTGGGGACTGCGTTCACTGTGTATGATAACGGCAAGGCGTGGAGGAAGCACGACCATGCTCACACCAGGCACGAGTTGGCAGCTGTTGTTTATGTAAGTATTAGTTGTCTAATATCGACGGACCCCACCGAACTAACGCGCACAGCTGACAGCTTCGCCGGCAAGCTGCGCTCCAATCTACTGGGGACTGCGTTCACTGTGTATGATAACGGCAAGGCGTGGAGGAAGCACGACCATGCTCACACCAGGCACGAGTTGGCAGCTGTTGTTTATGTAAGTATTAGTTGTCTAATATCGACGGACCCCACCGAACTAACGCGCACAGCTGACAGCTTCGCCGGCAAGCTGCGCTCCAATCTACTGGGGACTGCGTTCACTGTGTATGATAACGGCAAGGCGTGGAGGAAGCACGACCATGCTCACACCAGGCACGAGTTGGCAGCTGTTGTTTATGTAAGTATTAGTTGTCTAATATCGACGGACCCCACCGAACTAACGCGCACAGCTGACAGCTTCGCCGGCAAGCTGCGCTCCAATCTACTGGGGACTGCGTTCACTGTGTATGATAACGGCAAGGCGTGGAGGAAGCACGACCATGCTCACACCAGGCACGAGTTGGCAGCTGTTGTTTATGTAAGTATTAGTTGTCTAATATCAACGGACCCCACCGAACTAACGCGCACAGCTGACAGCTTCGCCGGCAAGCTGCGCTCCAATCTACTGGGGACTGCGTTCACTGTGTATGATAACGGCAAGGCGTGGAGGAAGCACGACCATGCTCACACCAGGCACGAGTTGGCAGCTGTTGTTTATGTAAGTATTAATTGTCTAATATCGACGGACCCCACCGAACTAACGCGCACAGCTGACAGCTTCGCCGGCAAGCTGCGCTCCAATCTACTGGGGACTGCGTTCACTGTGTATGATAACGGCAAGGCGTGGAGGAAGCACGACCATGCTCACACCAGGCACGAGTTGGCAGCTGTTGTTTATGTAAGTATTAGTTGTCTAATATCAACGGACCCCACCGAACTAACGCGCACAGCTGACAGCTTCGCCGGCAAGCTGCGCTCCAATCTACTGGGGACTGCGTTTACTGTGTATGATAACGGCAAGGCGTGGAGGAAGCACGACCATGCTCACACCAGGCACGAGTTGGCAGCTGTTGTTTATGTAAGTATTAATTGTCTAATATCGACGGACCCCACCGAACTAACGCGCACAGCTGACAGCTTCGCCGGCAAGCTGCGCTCCAATCTACTGGGGACTGCGTTCACTGTGTATGATAACGGCAAGGCGTGGAGGAAGCACGACCATGCTCACACCAGGCACGAGTTGGCAGCTGTTGTTTATGTAAGTATTAGTTGTCTAATATCAACGGACCCCACCGAACTAACGCGCACAGCTGACAGTTTCGCCGGCAAGCTGCGCTCCAATCTACTGGGGACTGCGTTCACTGTGTATGATAACGGCAAGGCGTGGAGGAAGCACGACCATGCTCACACCAGGCACGAGTTGGCAGCTGTTGTTAACATAACCTCGAACGAGATCATCCGGCAGTAG
Protein Sequence
MASMRDQKIEQQRQLMEQKMKQKRQNSGMVQANDLRVGSAKRPISGSRSRELHGYDGPMQFLMSPVNPDQVIPLQTNRISTYDELGNQIEVLTVGEGDGSGEEDDESVPVCSVGREASTDDVCADAAVAPLHDKPRRDSSPSQTAEIEGSVEGAVETFVVTPAKHGTLYKCRIARDRKGMDRGLYPTYFLHLEKDYGKKVFLLAARKRKKSATSNYLISTDPTELTRTADSFAGKLRSNLLGTAFTVYDNGKAWRKHDHAHTRHELAAVVYVSISCLISTDPTELTRTADSFAGKLRSNLLGTAFTVYDNGKAWRKHDHAHTRHELAAVVYVSISCLISTDPTELTRTADSFAGKLRSNLLGTAFTVYDNGKAWRKHDHAHTRHELAAVVYVSISCLISTDPTELTRTADSFAGKLRSNLLGTAFTVYDNGKAWRKHDHAHTRHELAAVVYVSISCLISTDPTELTRTADSFAGKLRSNLLGTAFTVYDNGKAWRKHDHAHTRHELAAVVYVSISCLISTDPTELTRTADSFAGKLRSNLLGTAFTVYDNGKAWRKHDHAHTRHELAAVVYVSISCLISTDPTELTRTADSFAGKLRSNLLGTAFTVYDNGKAWRKHDHAHTRHELAAVVYVSISCLISTDPTELTRTADSFAGKLRSNLLGTAFTVYDNGKAWRKHDHAHTRHELAAVVYVSISCLISTDPTELTRTADSFAGKLRSNLLGTAFTVYDNGKAWRKHDHAHTRHELAAVVYVSINCLISTDPTELTRTADSFAGKLRSNLLGTAFTVYDNGKAWRKHDHAHTRHELAAVVYVSISCLISTDPTELTRTADSFAGKLRSNLLGTAFTVYDNGKAWRKHDHAHTRHELAAVVYVSINCLISTDPTELTRTADSFAGKLRSNLLGTAFTVYDNGKAWRKHDHAHTRHELAAVVYVSISCLISTDPTELTRTADSFAGKLRSNLLGTAFTVYDNGKAWRKHDHAHTRHELAAVVNITSNEIIRQ

Similar Transcription Factors

Sequence clustering based on sequence similarity using MMseqs2

100% Identity
-
90% Identity
-
80% Identity
-