Basic Information

Gene Symbol
king-tubby
Assembly
GCA_036785405.1
Location
JAWDAA010000029.1:4042193-4055550[-]

Transcription Factor Domain

TF Family
Tub
Domain
Tub domain
PFAM
PF01167
TF Group
Unclassified Structure
Description
Tubby, an autosomal recessive mutation, mapping to mouse chromosome 7, was recently found to be the result of a splicing defect in a novel gene with unknown function. This mutation maps to the tub gene [3, 4]. The mouse tubby mutation is the cause of maturity-onset obesity, insulin resistance and sensory deficits. By contrast with the rapid juvenile-onset weight gain seen in diabetes (db) and obese (ob) mice, obesity in tubby mice develops gradually, and strongly resembles the late-onset obesity observed in the human population. Excessive deposition of adipose tissue culminates in a two-fold increase of body weight. Tubby mice also suffer retinal degeneration and neurosensory hearing loss. The tripartite character of the tubby phenotype is highly similar to human obesity syndromes, such as Alstrom and Bardet-Biedl. Although these phenotypes indicate a vital role for tubby proteins, no biochemical function has yet been ascribed to any family member [2], although it has been suggested that the phenotypic features of tubby mice may be the result of cellular apoptosis triggered by expression of the mutated tub gene. TUB is the founding-member of the tubby-like proteins, the TULPs. TULPs are found in multicellular organisms from both the plant and animal kingdoms. Ablation of members of this protein family cause disease phenotypes that are indicative of their importance in nervous-system function and development [1]. Mammalian TUB is a hydrophilic protein of ~500 residues. The N-terminal (IPR005398) portion of the protein is conserved neither in length nor sequence, but, in TUB, contains the nuclear localisation signal and may have transcriptional-activation activity. The C-terminal 250 residues are highly conserved. The C-terminal extremity contains a cysteine residue that might play an important role in the normal functioning of these proteins. The crystal structure of the C-terminal core domain from mouse tubby has been determined to 1.9A resolution. This domain is arranged as a 12-stranded, all anti-parallel, closed β-barrel that surrounds a central α helix, (which is at the extreme carboxyl terminus of the protein) that forms most of the hydrophobic core. Structural analyses suggest that TULPs constitute a unique family of bipartite transcription factors [2].
Hmmscan Out
# of c-Evalue i-Evalue score bias hmm coord from hmm coord to ali coord from ali coord to env coord from env coord to acc
1 35 6.7e-61 1.1e-56 193.2 0.0 3 202 165 353 163 359 0.93
2 35 2.3e-17 3.8e-13 50.6 0.1 144 202 359 417 353 423 0.91
3 35 2.3e-17 3.8e-13 50.6 0.1 144 202 423 481 417 487 0.91
4 35 2.3e-17 3.8e-13 50.6 0.1 144 202 487 545 481 551 0.91
5 35 3.6e-18 6e-14 53.2 0.1 144 202 551 609 545 616 0.91
6 35 2.3e-17 3.8e-13 50.6 0.1 144 202 615 673 609 679 0.91
7 35 2.3e-17 3.8e-13 50.6 0.1 144 202 679 737 674 744 0.91
8 35 3.8e-18 6.2e-14 53.1 0.1 144 202 743 801 739 810 0.91
9 35 2.3e-17 3.8e-13 50.6 0.1 144 202 807 865 801 871 0.91
10 35 2.6e-17 4.3e-13 50.4 0.1 144 202 871 929 866 934 0.91
11 35 2.3e-17 3.8e-13 50.6 0.1 144 202 935 993 930 1000 0.91
12 35 3.9e-18 6.4e-14 53.1 0.1 144 202 999 1057 994 1063 0.91
13 35 2.4e-17 3.9e-13 50.5 0.1 144 202 1063 1121 1058 1127 0.91
14 35 2.4e-17 3.9e-13 50.5 0.1 144 202 1127 1185 1122 1191 0.91
15 35 2.2e-17 3.7e-13 50.6 0.1 144 202 1191 1249 1185 1256 0.91
16 35 2.2e-17 3.7e-13 50.6 0.1 144 202 1255 1313 1249 1320 0.91
17 35 5.3e-17 8.7e-13 49.4 0.1 145 202 1320 1377 1312 1384 0.89
18 35 2.4e-17 3.9e-13 50.5 0.1 144 202 1383 1441 1378 1447 0.91
19 35 2.5e-17 4.1e-13 50.5 0.1 144 202 1447 1505 1443 1511 0.91
20 35 2.4e-17 3.9e-13 50.5 0.1 144 202 1511 1569 1506 1575 0.91
21 35 3.8e-18 6.2e-14 53.1 0.1 144 202 1575 1633 1569 1639 0.91
22 35 2.3e-17 3.8e-13 50.6 0.1 144 202 1639 1697 1633 1703 0.91
23 35 2.4e-17 3.9e-13 50.5 0.1 144 202 1703 1761 1698 1767 0.91
24 35 2.5e-17 4.1e-13 50.5 0.1 144 202 1767 1825 1763 1831 0.91
25 35 2.3e-17 3.8e-13 50.6 0.1 144 202 1831 1889 1825 1895 0.91
26 35 2.3e-17 3.8e-13 50.6 0.1 144 202 1895 1953 1889 1959 0.91
27 35 3.9e-18 6.5e-14 53.1 0.1 144 202 1959 2017 1955 2024 0.91
28 35 2.2e-17 3.7e-13 50.6 0.1 144 202 2023 2081 2017 2088 0.91
29 35 2.4e-17 3.9e-13 50.5 0.1 144 202 2087 2145 2082 2151 0.91
30 35 2.4e-17 3.9e-13 50.5 0.1 144 202 2151 2209 2146 2215 0.91
31 35 2.3e-17 3.8e-13 50.6 0.1 144 202 2215 2273 2210 2280 0.91
32 35 6.1e-17 1e-12 49.2 0.1 145 202 2280 2337 2275 2343 0.90
33 35 2.4e-17 3.9e-13 50.5 0.1 144 202 2343 2401 2338 2407 0.91
34 35 5.8e-17 9.6e-13 49.2 0.1 145 202 2408 2465 2402 2471 0.89
35 35 3.1e-51 5.1e-47 161.6 0.2 144 256 2471 2580 2465 2580 0.96

Sequence Information

Coding Sequence
ATGGCTTCGATAAGCGTGCGAGACCAAAAGATCGAACAGCAACGCCAAATAATGGAGCAAAAGATGAAACAAAAGAGGCAGAACTCTGGTATGGTACAAGCAAATGATCTCAGAGTATCATCAGCCAAACGTCCCATATCTGGCAGTCGGTCGCGTGAACTCCATGgctATGATGGTCCGATGCAATTTCTCATGTCTCCAGTAAATCCAGACCAAGTTATACCTCTTCAAACAAATAGAATATCAACGTACGATGAGCTCGGCAATCAAATAGAAGTACTGACAGTGGGCGATGACGTGGGGGAAGGGAGCGGCGAGGAGGAGGGAGAGAGCGTGCCGGTGTGCAGCATGGGTCGAGACGCCAGCACCGATGACGTCTGTGCTGACGCAGCGGTGGCGCCCTTGCAGAACAGAGCTCAGAGGGACGGCTCACCTAGCCAGACAGCAGAAATCGAGGGATCGGTAGAGGGTTCCGTAGAGACATTCGTGATAACTCCGGCGAAGCACGGCACGCTTTACAAGTGCAGGATCGCGCGCGACAGGAAGGGCATGGACAGGGGGCTCTACCCCACATACTTCTTGCACCTCGAGAAGGATTACGGCAAGAAAGTCTTCTTGCTAGCTGGGCGCAAACGCAAGAAATCTGCGACGTCTAACTACCTGATATCGACAGACCCCACCGAGCTAACCCGTCAAGCGGACAGCTTCGCGGGGAAACTGCGCTCAAACCTCCTGGGGACTGCCTTCACGGTGTACGATAACGGCAAAGCGTGGAGGAAGAACCATAGAGACCCGCCTCGACACGAACTCGCGGCTGTTGTCTATGACACGAACGTTCTAGGCTTCAAGGGTCCACGGAAAATGACGGTGATCCTGCCGGGAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTGCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCCGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTGCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTGCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGGGAGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTGCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTGCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGGGAGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGGGAGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGTAGATAAGTTAAACGTAATGACGCCGGACCGTCAGCGCGTCACCATCGCGCCGCAGGACGACAGCGAGAGCCTGCTGGAGCGCTGGAAGAGCCAGAACTTCGACGACATCGTCGTGCTGCACAACAAGACCCCCGTGTGGAGCGACGAGACGCAGTCCTACGTGTTGAACTTCCACGGGAGAGTGACACAGGCAAGCGTGAAAAACTTTCAAATCGTCCACGACTCGGAGCCCGACTACGTGGTGATGCAGTTCGGCAGGATTTCCGAAGACGTGTTCACTATGGACTTCAGATATCCTCTGTGTGCCTTGCAAGCGTTCGGCATTGCTCTCAGTTCATTCGACAGCAAGTTGGCTTGTGAGTGA
Protein Sequence
MASISVRDQKIEQQRQIMEQKMKQKRQNSGMVQANDLRVSSAKRPISGSRSRELHGYDGPMQFLMSPVNPDQVIPLQTNRISTYDELGNQIEVLTVGDDVGEGSGEEEGESVPVCSMGRDASTDDVCADAAVAPLQNRAQRDGSPSQTAEIEGSVEGSVETFVITPAKHGTLYKCRIARDRKGMDRGLYPTYFLHLEKDYGKKVFLLAGRKRKKSATSNYLISTDPTELTRQADSFAGKLRSNLLGTAFTVYDNGKAWRKNHRDPPRHELAAVVYDTNVLGFKGPRKMTVILPGMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQCYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQCYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQCYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQGVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQCYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQCYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQGVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQGVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQVDKLNVMTPDRQRVTIAPQDDSESLLERWKSQNFDDIVVLHNKTPVWSDETQSYVLNFHGRVTQASVKNFQIVHDSEPDYVVMQFGRISEDVFTMDFRYPLCALQAFGIALSSFDSKLACE

Similar Transcription Factors

Sequence clustering based on sequence similarity using MMseqs2

100% Identity
-
90% Identity
-
80% Identity
-