Basic Information

Gene Symbol
-
Assembly
GCA_032445375.1
Location
CM063649.1:5407666-5424059[-]

Transcription Factor Domain

TF Family
zf-CCCH
Domain
zf-CCCH domain
PFAM
PF00642
TF Group
Zinc-Coordinating Group
Description
This entry represents C-x8-C-x5-C-x3-H (CCCH) type Zinc finger (Znf) domains. Proteins containing CCCH Znf domains include Znf proteins from eukaryotes involved in cell cycle or growth phase-related regulation, e.g. human TIS11B (butyrate response factor 1, also known as mRNA decay activator protein ZFP36L1), a probable regulatory protein involved in regulating the response to growth factors, and the mouse TTP growth factor-inducible nuclear protein, which has the same function. The mouse TTP protein is induced by growth factors. Another protein containing this domain is the human splicing factor U2AF 35kDa subunit, which plays a critical role in both constitutive and enhancer-dependent splicing by mediating essential protein-protein interactions and protein-RNA interactions required for 3' splice site selection. It has been shown that different CCCH-type Znf proteins interact with the 3'-untranslated region of various mRNA [7, 8]. This type of Znf is very often present in two copies. Zinc finger (Znf) domains are relatively small protein motifs which contain multiple finger-like protrusions that make tandem contacts with their target molecule. Some of these domains bind zinc, but many do not; instead binding other metals such as iron, or no metal at all. For example, some family members form salt bridges to stabilise the finger-like folds. They were first identified as a DNA-binding motif in transcription factor TFIIIA from Xenopus laevis (African clawed frog), however they are now recognised to bind DNA, RNA, protein and/or lipid substrates [1, 2, 3, 4, 6]. Their binding properties depend on the amino acid sequence of the finger domains and of the linker between fingers, as well as on the higher-order structures and the number of fingers. Znf domains are often found in clusters, where fingers can have different binding specificities. There are many superfamilies of Znf motifs, varying in both sequence and structure. They display considerable versatility in binding modes, even between members of the same class (e.g. some bind DNA, others protein), suggesting that Znf motifs are stable scaffolds that have evolved specialised functions. For example, Znf-containing proteins function in gene transcription, translation, mRNA trafficking, cytoskeleton organisation, epithelial development, cell adhesion, protein folding, chromatin remodelling and zinc sensing, to name but a few [5]. Zinc-binding motifs are stable structures, and they rarely undergo conformational changes upon binding their target.
Hmmscan Out
# of c-Evalue i-Evalue score bias hmm coord from hmm coord to ali coord from ali coord to env coord from env coord to acc
1 68 0.23 2.2e+03 1.2 0.0 3 19 29 45 29 46 0.92
2 68 0.39 3.8e+03 0.5 0.0 3 19 47 63 46 64 0.91
3 68 0.18 1.8e+03 1.5 0.0 3 19 65 81 64 82 0.92
4 68 0.39 3.8e+03 0.5 0.0 3 19 83 99 82 100 0.91
5 68 0.18 1.8e+03 1.5 0.0 3 19 101 117 100 118 0.92
6 68 1 9.9e+03 -0.9 0.0 4 19 120 135 119 136 0.88
7 68 0.39 3.8e+03 0.5 0.0 3 19 137 153 136 154 0.91
8 68 0.18 1.8e+03 1.5 0.0 3 19 155 171 154 172 0.92
9 68 0.18 1.8e+03 1.5 0.0 3 19 173 189 172 190 0.92
10 68 0.39 3.8e+03 0.5 0.0 3 19 218 234 217 235 0.91
11 68 0.18 1.8e+03 1.5 0.0 3 19 236 252 235 253 0.92
12 68 0.18 1.8e+03 1.5 0.0 3 19 272 288 271 289 0.92
13 68 0.39 3.8e+03 0.5 0.0 3 19 290 306 289 307 0.91
14 68 0.18 1.8e+03 1.5 0.0 3 19 308 324 307 325 0.92
15 68 0.18 1.7e+03 1.6 0.0 3 19 326 342 324 343 0.92
16 68 0.18 1.7e+03 1.5 0.0 3 19 362 378 361 379 0.92
17 68 0.66 6.4e+03 -0.3 0.0 3 19 398 414 397 415 0.90
18 68 0.31 3e+03 0.8 0.0 3 19 425 441 424 442 0.91
19 68 0.39 3.8e+03 0.5 0.0 3 19 443 459 442 460 0.91
20 68 0.39 3.8e+03 0.5 0.0 3 19 479 495 478 496 0.91
21 68 0.18 1.8e+03 1.5 0.0 3 19 497 513 496 514 0.92
22 68 0.23 2.2e+03 1.2 0.0 3 19 524 540 524 541 0.92
23 68 0.23 2.2e+03 1.2 0.0 3 19 551 567 551 568 0.92
24 68 0.18 1.8e+03 1.5 0.0 3 19 569 585 568 586 0.92
25 68 0.18 1.8e+03 1.5 0.0 3 19 587 603 586 604 0.92
26 68 0.39 3.8e+03 0.5 0.0 3 19 605 621 604 622 0.91
27 68 0.18 1.8e+03 1.5 0.0 3 19 623 639 622 640 0.92
28 68 0.18 1.8e+03 1.5 0.0 3 19 641 657 640 658 0.92
29 68 0.39 3.8e+03 0.5 0.0 3 19 659 675 658 676 0.91
30 68 0.18 1.8e+03 1.5 0.0 3 19 677 693 676 694 0.92
31 68 0.18 1.8e+03 1.5 0.0 3 19 695 711 694 712 0.92
32 68 0.66 6.4e+03 -0.3 0.0 3 19 713 729 712 730 0.90
33 68 0.18 1.8e+03 1.5 0.0 3 19 740 756 739 757 0.92
34 68 0.39 3.8e+03 0.5 0.0 3 19 758 774 757 775 0.91
35 68 0.66 6.4e+03 -0.3 0.0 3 19 785 801 784 802 0.90
36 68 0.39 3.8e+03 0.5 0.0 3 19 812 828 811 829 0.91
37 68 0.39 3.8e+03 0.5 0.0 3 19 830 846 829 847 0.91
38 68 0.18 1.8e+03 1.5 0.0 3 19 857 873 856 874 0.92
39 68 0.18 1.8e+03 1.5 0.0 3 19 875 891 874 892 0.92
40 68 0.23 2.2e+03 1.2 0.0 3 19 902 918 902 919 0.92
41 68 0.39 3.8e+03 0.5 0.0 3 19 920 936 919 937 0.91
42 68 0.18 1.8e+03 1.5 0.0 3 19 938 954 937 955 0.92
43 68 0.65 6.3e+03 -0.3 0.0 3 19 956 972 954 973 0.91
44 68 0.18 1.8e+03 1.5 0.0 3 19 983 999 982 1000 0.92
45 68 0.18 1.8e+03 1.5 0.0 3 19 1001 1017 1000 1018 0.92
46 68 0.18 1.8e+03 1.5 0.0 3 19 1046 1062 1045 1063 0.92
47 68 0.18 1.8e+03 1.5 0.0 3 19 1064 1080 1063 1081 0.92
48 68 0.18 1.8e+03 1.5 0.0 3 19 1082 1098 1081 1099 0.92
49 68 0.31 3e+03 0.8 0.0 3 19 1100 1116 1099 1117 0.91
50 68 0.18 1.8e+03 1.5 0.0 3 19 1118 1134 1117 1135 0.92
51 68 0.18 1.8e+03 1.5 0.0 3 19 1136 1152 1135 1153 0.92
52 68 0.18 1.8e+03 1.5 0.0 3 19 1154 1170 1153 1171 0.92
53 68 0.39 3.8e+03 0.5 0.0 3 19 1172 1188 1171 1189 0.91
54 68 0.31 3e+03 0.8 0.0 3 19 1190 1206 1189 1207 0.91
55 68 0.38 3.7e+03 0.5 0.0 3 19 1235 1251 1234 1252 0.91
56 68 0.18 1.7e+03 1.5 0.0 3 19 1271 1287 1270 1288 0.92
57 68 0.38 3.7e+03 0.5 0.0 3 19 1298 1314 1297 1315 0.91
58 68 0.18 1.7e+03 1.5 0.0 3 19 1334 1350 1333 1351 0.92
59 68 0.38 3.7e+03 0.5 0.0 3 19 1361 1377 1360 1378 0.91
60 68 0.18 1.8e+03 1.5 0.0 3 19 1397 1413 1396 1414 0.92
61 68 0.31 3e+03 0.8 0.0 3 19 1415 1431 1414 1432 0.91
62 68 0.31 3e+03 0.8 0.0 3 19 1433 1449 1432 1450 0.91
63 68 0.39 3.8e+03 0.5 0.0 3 19 1451 1467 1450 1468 0.91
64 68 0.31 3e+03 0.8 0.0 3 19 1496 1512 1495 1513 0.91
65 68 0.18 1.8e+03 1.5 0.0 3 19 1514 1530 1513 1531 0.92
66 68 0.31 3e+03 0.8 0.0 3 19 1532 1548 1531 1549 0.91
67 68 0.31 3e+03 0.8 0.0 3 19 1550 1566 1549 1567 0.91
68 68 0.39 3.8e+03 0.5 0.0 3 19 1568 1584 1567 1585 0.91

Sequence Information

Coding Sequence
ATGCACAAGACGCATAGCGCCGACAGCAGCTCCAGGACCTGCTTCTTCACCGTCACATTGCTGGTGTCGAGGGCTGCAACACACACCACACTGTGTCAGCACCTAgcggcgaccacactgtgtcagcgcggcgcggcgaccacactgtgtcagcacCTAGCGGTgaccacactgtgtcagcgcggcgcggcgaccacactgtgtcagcacctagcggcgaccacactgtgccagcgcggcgcggcgaccacactgtgtcagcacCTAGCGGTgaccacactgtgtcagcgcggcgcggcgaccacactgtgtcagcacCTAGCGGCGACCACACTGTGCCAGCGCGGCGCAGCGGTCACACTGTGCCAGCACCTAGCGGTgaccacactgtgtcagcgcGGCGCGGCGACCACACTGTGCCAGCACCTAGCGGTgaccacactgtgtcagcgcggcgcggcgaccacactgtgtcagcacctagcggcgaccacactgtgtcagcgcggcgcggcgaccacactgtgccagcacctagcggcgaccacactgtgtcagcgcGGCGCGGCGACCACACTGTGCCAGCACGGAGCAGCGACCACACTGTGCCAGCACCTAgcggcgaccacactgtgtcagcacctagcggcgaccacactgtgtcagcacCTAGCGGTgaccacactgtgtcagcgcGGAGCAGCGACCACACTGTGCCAGCACCTAgcggcgaccacactgtgtcagcgcGGCGCGGCGACCACACTGTGCCAGCACGGAGCAGCGACCACACTGTGCCAGCACGGAGCagcgaccacactgtgtcagcacctagcggcgaccacactgtgtcagcgcGGCGCGGCGACCACACTGTGCCAGCACCTAGCGGTgaccacactgtgtcagcgcggcgcggcgaccacactgtgtcagcacCTAGCGGCGACCACACTGTGCCAGCGCGGAGCagcgaccacactgtgtcagcacctagcggcgaccacactgtgtcagcgcGGCGCGGCGACCACACTGTGCCAGCACGGAGCAGCGACCACACTGTGCCAGCACCTAGCGGCGACCACACTGTGCCAGCACCTAgcggcgaccacactgtgtcagcgcggcgcggcgaccacactgtgtcagcacctagcggcgaccacactgtgtcagcacctagcggcgaccacactgtgtcagcacCTAGCGGTGACCACACTATGTCAGCACGGAGCAGCGACCACACTGTGCCAGCACGGAGCAGCGACCACACTGTGCCAGCACCTAGCGGCGACCACACTGTGCCAGCACGGAGCAGCGACCACACTGTGCCAGCACCTAGCGGTgaccacactgtgtcagcgcGGAGCAGCGACCACACTGTGCCAGCACCTAgcggcgaccacactgtgtcagcacctagcggcgaccacactgtgtcagcacCTAGCGGTgaccacactgtgtcagcgcGGAGCAGCGACCACACTGTGCCAGCACCTAgcggcgaccacactgtgtcagcgcggcgcggcgaccacactgtgtcagcacCTAGCGGTgaccacactgtgtcagcacctagcggcgaccacactgtgtcagcgcGGCGCGGCGACCACACTGTGCCAGCACCTAGCGGTgaccacactgtgtcagcacctagcggcgaccacactgtgtcagcgcggagcagcgaccacactgtgtcagcacCTAGCGGCGACCACACTGTGCCAGCGCGGAGCagcgaccacactgtgtcagcacctagcggcgaccacactgtgtcagcgcGGCGCGGCGACCACACTGTGCCAGCACCTAGCGGTgaccacactgtgtcagcgcggcgcggcgaccacactgtgtcagcacCTAGCGGCGACCACACTGTGCCAGCGCGGAGCagcgaccacactgtgtcagcacctagcggcgaccacactgtgtcagcgcGGAGCAGCGACCACACTGTGCCAGCACCTAGCGGTgaccacactgtgtcagcgcggcgcggcgaccacactgtgtcagcacCTAGCGGCGACCACACTGTGCCAGCGCGGAGCagcgaccacactgtgtcagcacctagcggcgaccacactgtgtcagcgcGGCGCGGCGACCACACTGTGCCAGCACCTAGCGGTgaccacactgtgtcagcacGGAGCAGCGACCACACTGTGCCAGCACGGAGCAGCGACCACACTGTGCCAGCACCTAgcggcgaccacactgtgtcagcgcGGAGCAGCGACCACACTGTGCCAGCACCTAGCGGTgaccacactgtgtcagcgcggcgcggcgaccacactgtgtcagcgcGGCGCGGCGACCACACTGTGCCAGCACCTAGCGGTgaccacactgtgtcagcacggcgcggcgaccacactgtgtcagcgcGGAGCAGCGACCACACTGTGCCAGCACCTAGCGGTgaccacactgtgtcagcgcGGCGCGGCGACCACACTGTGCCAGCACCTAGCGGTgaccacactgtgtcagcgcggcgcggcgaccacactgtgccagcacctagcggcgaccacactgtgtcagcacctagcggcgaccacactgtgtcagcgcggcgcggcgaccacactgtgccagcacctagcggcgaccacactgtgtcagcgcGGCGCAGCGACCACACTGTGCCAGCACCTAGCGGTgaccacactgtgtcagcacctagcggcgaccacactgtgtcagcgcGGCGCAGCGACCACACTGTGCCAGCACCTAGCGGTgaccacactgtgtcagcgcggcgcggcgaccacactgtgtcagcacctagcggcgaccacactgtgtcagcgcGGCGCAGCGACCACACTGTGCCAGCACCTAGCGGTgaccacactgtgtcagcacggcgcggcgaccacactgtgccagcacctagcggcgaccacactgtgtcagcacctagcggcgaccacactgtgtcagcgcggcgcggcgaccacactgtgccagcacctagcggcgaccacactgtgtcagcgcggcgcggcgaccacactgtgtcagcacggagcagcgaccacactgtgtcagcgcGGCGCGGCGACCACACTGTGCCAGCACGGAGCAGCGACCACACTGTGCCAGCACCTAgcggcgaccacactgtgtcagcgcggcgcggcgaccacactgtgtcagcacctagcggcgaccacactgtgtcagcgcGGAGCAGCGACCACACTGTGCCAGCACCTAgcggcgaccacactgtgtcagcgcggcgcggcgaccacactgtgtcagcacCTAGCGGCGACCACACTGTGCCAGCACGGAGCAGCGACCACACTGTGCCAGCACCTAgcggcgaccacactgtgtcagcgcggcgcagcgaccacactgtgccagcacctagcggcgaccacactgtgtcagcgcggcgcggcgaccacactgtgtcagcacctagcggcgaccacactgtgtcagcgcGGAGCAGCGACCACACTGTGCCAGCACCTAGCGGTgaccacactgtgtcagcgcggcgcggcgaccacactgtgtcagcacCTAGCGGCGACCACACTGTGCCAGCACGGAGCagcgaccacactgtgtcagcacCTAGCGGCGGTCACACTGTGCCAGCGCGGAGCagcgaccacactgtgtcagcacCTAGCGGCGACCACACTGTGCCAGCACCTAGCGGTgaccacactgtgtcagcgcggcgcggcgaccacactgtgtcagcacCTAGCGGCGGTCACACTGTGCCAGCACGGAGCAGCGACCACACTGTGCCAGCACCTAgcggcgaccacactgtgtcagcgcggcgcggcgaccacactgtgtcagcgcGGAGCAGCGACCACACTGTGCCAGCACCTAGCGGTgaccacactgtgtcagcgcggcgcggcgaccacactgtgtcagcacCTAGCGGCGGTCACACTGTGCCAGCACGGAGCAGCGACCACACTGTGCCAGCACCTAgcggcgaccacactgtgtcagcgcggcgcggcgaccacactgtgtcagcgcGGAGCAGCGACCACACTGTGCCAGCACCTAGCGGTgaccacactgtgtcagcgcggcgcggcgaccacactgtgtcagcacCTAGCGGCGGTCACACTGTGCCAGCACGGAGCAGCGACCACACTGTGCCAGCACCTAgcggcgaccacactgtgtcagcgcggcgcggcgaccacactgtgtcagcacCTAGCGGCGACCACACTGTGCCAGCACGGAGCAGCGACCACACTGTGCCAGCACCTAgcggcgaccacactgtgtcagcacGGAGCGGCGACCACACTGTGCCAGCACCTAGCGGTgaccacactgtgtcagcgcggcgcggcgaccacactgtgtcagcacCTAGCGGCGGTCACACTGTGCCAGCGCGGCGCAGCGGTCACACTGTGCCAGCACGGAGCagcgaccacactgtgtcagcacCTAGCGGCGACCACACTGTGCCAGCACGGAGCAGCGACCACACTGTGCCAGCACCTAgcggcgaccacactgtgtcagcgcggcgcggcgaccacactgtgtcagcacCTAGCGGCGACCACACTGTGCCAGCACGGAGCAGCGACCACACTGTGCCAGCACCTAgcggcgaccacactgtgtcagcacGGAGCGGCGACCACACTGTGCCAGCACCTAGCGGTgaccacactgtgtcagcgcggcgcggcgaccacactgtgtcagcacCTAGCGGCGGTCACACTGTGCCAGCGCGGCGCAGCGGTCACACTGTGTCAGCACGGAGCagcgaccacactgtgtcagcacGGCGCagcgaccacactgtgtcagcacggagcagcgaccacactgtgtcagcacggagcagcgaccacactgtgtcagcacGGCGCagcgaccacactgtgtcagcacGGCGCagcgaccacactgtgtcagcacGGCGCagcgaccacactgtgtcagcacGGCGCagcgaccacactgtgtcagcacGGCGCagcgaccacactgtgtcagcacggagcggcgaccacactgtgtcagcacggagcggcgaccacactgtgtcagcgcggagcggcgaccacactgtgtcagcacggagcggcgaccacactgtgtcagcacGGAGCAGCGACCACACTGTGCCTGCAGGGCGCAGCGACCACACTGTGTCATCACGGAGCAGCGACCACACTGTGCCAGCACCTAGCGGCGGTCACACTGTGCCAGCACGGAGCAGCGACCACACTTGTCATCACGGAGCAGCGACCACACTTTGTCAGCGCGGATTACATGGACTGCAGGGACAGTCTGCGAGCAACAAGTGACCTCGTCCGGCCTCTGGCACTGTGTCCCACGCATCTGACACACGTGCCGCTGAGCTTCCGTGGCGACCAGCGTTCAGCTCAGGCCCTGCCGCACTGGCATACACCTTCCAACATGTGTCAAAGTTTGAGGGTTCTGATTCCAGATCGCAGCCTCCCAGGCCGGAGTCACCTGCTGCCTGGCTTCTGGGCCGACGTTTCCGCACGCCTTACTGCAGCCATCATCAAGGGCCATTGCGCAACCAAAACCTTCCTGAGTGAGCATTTGAGAAATACTCTTAGCACAGCAGCATTTCCTGGCACCACACAGCACCACCTTGCGCCACTTGGTGTCTCCCGGCACCACCTGACACCCTTGTCTTTCACTCCCAGCGAAGCCAGAGCGGCGAGTGGCGAGCGTGTCCACGGCTCTGATCGGAGACACCACACACTCGACCCACGCCTGGCAGATGAGCGCGTGATGGCATTGAGGCGGGGAGCCGCGCGGCGCAGGACGAGAGCCGCCCAAGCGCCCTGCCGCGGCGGGGAGCGGAGACGTGTCTCTTCTCCAGCCTCGCGCGAGACACACGCGGTTGTGTCGCCACTGCACATGCCACAGCTAGTACCTGTGTTCACCCGGGTCACCTCGGCACTATCCGAGACTGCCCGACCAGCTGGGGGCCGACCCAGCGCGCAGATGTCTGAGTCACGCCAAGTGAGTCTGGCTCGAGCTATCCACCCACGCCGCGACGACATGCTCGGCGCGGTGTACCAACAGCACGTGGCGAAGTCGGCGCGGTGTACACGCCGCGCGGCAGTAAAGCAGGCGATAGCGCAGTCAGACGAGTCTAGGAGGGGGAGGCTCTCAGCCAACAGTCATATACGAGGCGACGAGGCGAGACCCGCCGGCCGGCCAATACGAGCTCTCCCCAGCtctcgccagccaatcagcgctACTGGCAGAGTTCTGACCACAAGGGCGCGGGGGTTCCTTCACCTCGCAGGAGCCCGGCACACCAGTTCCACGACAGAGCGGCAATCCAACACGTGCGGGAAACATCGAGTTGCCGGGGTCCAAATGGCGGGAGTCTGTCTTGTCGCCCGGCTGTCGTCAGAGTTAGtgaAGGCTTCCACGGGACGAGGGGAAAGGAGGATCAGCGGTGCCAACCCTCGCTTGCACAACCCCGGGCAGGAGGGTCAGCCTCGCCTACACTGGCCGGGCGGCGCGCATCCATCACCGGCTGGAATGCCGACCGCGCGCTATCGGTCCCGGCCAGGTGAGGCGCGGGGGGTGGAAGCCGGCTCCGCGCTTCCTGTTGCGACCACTCACTGCTTCCTGTCCTCGCCTTGCGTCGGGTGCTTCGGTGTTTCTGCGTGTTTCTTCAGTTAG
Protein Sequence
MHKTHSADSSSRTCFFTVTLLVSRAATHTTLCQHLAATTLCQRGAATTLCQHLAVTTLCQRGAATTLCQHLAATTLCQRGAATTLCQHLAVTTLCQRGAATTLCQHLAATTLCQRGAAVTLCQHLAVTTLCQRGAATTLCQHLAVTTLCQRGAATTLCQHLAATTLCQRGAATTLCQHLAATTLCQRGAATTLCQHGAATTLCQHLAATTLCQHLAATTLCQHLAVTTLCQRGAATTLCQHLAATTLCQRGAATTLCQHGAATTLCQHGAATTLCQHLAATTLCQRGAATTLCQHLAVTTLCQRGAATTLCQHLAATTLCQRGAATTLCQHLAATTLCQRGAATTLCQHGAATTLCQHLAATTLCQHLAATTLCQRGAATTLCQHLAATTLCQHLAATTLCQHLAVTTLCQHGAATTLCQHGAATTLCQHLAATTLCQHGAATTLCQHLAVTTLCQRGAATTLCQHLAATTLCQHLAATTLCQHLAVTTLCQRGAATTLCQHLAATTLCQRGAATTLCQHLAVTTLCQHLAATTLCQRGAATTLCQHLAVTTLCQHLAATTLCQRGAATTLCQHLAATTLCQRGAATTLCQHLAATTLCQRGAATTLCQHLAVTTLCQRGAATTLCQHLAATTLCQRGAATTLCQHLAATTLCQRGAATTLCQHLAVTTLCQRGAATTLCQHLAATTLCQRGAATTLCQHLAATTLCQRGAATTLCQHLAVTTLCQHGAATTLCQHGAATTLCQHLAATTLCQRGAATTLCQHLAVTTLCQRGAATTLCQRGAATTLCQHLAVTTLCQHGAATTLCQRGAATTLCQHLAVTTLCQRGAATTLCQHLAVTTLCQRGAATTLCQHLAATTLCQHLAATTLCQRGAATTLCQHLAATTLCQRGAATTLCQHLAVTTLCQHLAATTLCQRGAATTLCQHLAVTTLCQRGAATTLCQHLAATTLCQRGAATTLCQHLAVTTLCQHGAATTLCQHLAATTLCQHLAATTLCQRGAATTLCQHLAATTLCQRGAATTLCQHGAATTLCQRGAATTLCQHGAATTLCQHLAATTLCQRGAATTLCQHLAATTLCQRGAATTLCQHLAATTLCQRGAATTLCQHLAATTLCQHGAATTLCQHLAATTLCQRGAATTLCQHLAATTLCQRGAATTLCQHLAATTLCQRGAATTLCQHLAVTTLCQRGAATTLCQHLAATTLCQHGAATTLCQHLAAVTLCQRGAATTLCQHLAATTLCQHLAVTTLCQRGAATTLCQHLAAVTLCQHGAATTLCQHLAATTLCQRGAATTLCQRGAATTLCQHLAVTTLCQRGAATTLCQHLAAVTLCQHGAATTLCQHLAATTLCQRGAATTLCQRGAATTLCQHLAVTTLCQRGAATTLCQHLAAVTLCQHGAATTLCQHLAATTLCQRGAATTLCQHLAATTLCQHGAATTLCQHLAATTLCQHGAATTLCQHLAVTTLCQRGAATTLCQHLAAVTLCQRGAAVTLCQHGAATTLCQHLAATTLCQHGAATTLCQHLAATTLCQRGAATTLCQHLAATTLCQHGAATTLCQHLAATTLCQHGAATTLCQHLAVTTLCQRGAATTLCQHLAAVTLCQRGAAVTLCQHGAATTLCQHGAATTLCQHGAATTLCQHGAATTLCQHGAATTLCQHGAATTLCQHGAATTLCQHGAATTLCQHGAATTLCQHGAATTLCQHGAATTLCQRGAATTLCQHGAATTLCQHGAATTLCLQGAATTLCHHGAATTLCQHLAAVTLCQHGAATTLVITEQRPHFVSADYMDCRDSLRATSDLVRPLALCPTHLTHVPLSFRGDQRSAQALPHWHTPSNMCQSLRVLIPDRSLPGRSHLLPGFWADVSARLTAAIIKGHCATKTFLSEHLRNTLSTAAFPGTTQHHLAPLGVSRHHLTPLSFTPSEARAASGERVHGSDRRHHTLDPRLADERVMALRRGAARRRTRAAQAPCRGGERRRVSSPASRETHAVVSPLHMPQLVPVFTRVTSALSETARPAGGRPSAQMSESRQVSLARAIHPRRDDMLGAVYQQHVAKSARCTRRAAVKQAIAQSDESRRGRLSANSHIRGDEARPAGRPIRALPSSRQPISATGRVLTTRARGFLHLAGARHTSSTTERQSNTCGKHRVAGVQMAGVCLVARLSSELVKASTGRGERRISGANPRLHNPGQEGQPRLHWPGGAHPSPAGMPTARYRSRPGEARGVEAGSALPVATTHCFLSSPCVGCFGVSACFFS

Similar Transcription Factors

Sequence clustering based on sequence similarity using MMseqs2

100% Identity
-
90% Identity
-
80% Identity
-