Basic Information

Gene Symbol
-
Assembly
GCA_949825045.1
Location
OX463811.1:7267674-7279820[-]

Transcription Factor Domain

TF Family
zf-C2H2
Domain
zf-C2H2 domain
PFAM
PF00096
TF Group
Zinc-Coordinating Group
Description
The C2H2 zinc finger is the classical zinc finger domain. The two conserved cysteines and histidines co-ordinate a zinc ion. The following pattern describes the zinc finger. #-X-C-X(1-5)-C-X3-#-X5-#-X2-H-X(3-6)-[H/C] Where X can be any amino acid, and numbers in brackets indicate the number of residues. The positions marked # are those that are important for the stable fold of the zinc finger. The final position can be either his or cys. The C2H2 zinc finger is composed of two short beta strands followed by an alpha helix. The amino terminal part of the helix binds the major groove in DNA binding zinc fingers. The accepted consensus binding sequence for Sp1 is usually defined by the asymmetric hexanucleotide core GGGCGG but this sequence does not include, among others, the GAG (=CTC) repeat that constitutes a high-affinity site for Sp1 binding to the wt1 promoter [1].
Hmmscan Out
# of c-Evalue i-Evalue score bias hmm coord from hmm coord to ali coord from ali coord to env coord from env coord to acc
1 14 0.002 0.51 13.6 0.5 1 23 304 326 304 326 0.98
2 14 1.7 4.4e+02 4.4 1.2 5 23 354 373 353 373 0.90
3 14 0.53 1.4e+02 6.0 0.2 2 11 426 435 425 451 0.90
4 14 0.54 1.4e+02 6.0 0.0 1 21 580 600 580 601 0.96
5 14 5.3e-05 0.014 18.6 1.0 1 23 614 637 614 637 0.96
6 14 1.4 3.7e+02 4.7 5.8 1 23 671 693 671 693 0.97
7 14 0.067 18 8.8 0.2 2 23 721 743 720 743 0.93
8 14 0.0037 0.96 12.8 0.4 3 23 766 786 764 786 0.96
9 14 8.1e-06 0.0021 21.1 3.2 2 23 791 813 791 813 0.96
10 14 0.11 28 8.2 2.7 2 23 817 838 816 839 0.94
11 14 5.8 1.5e+03 2.7 4.3 1 23 848 871 848 871 0.92
12 14 6.7e-05 0.017 18.3 2.2 1 23 878 900 878 900 0.98
13 14 0.22 58 7.2 0.7 2 23 909 930 908 930 0.93
14 14 0.34 89 6.6 0.7 2 23 937 959 936 959 0.92

Sequence Information

Coding Sequence
aTGTCGTCCTCAAGCAGCGGTGCTGTGACTCCcgtcccgttgtctgtctgccGCTGCTGCCTCGCCGAAGGCTGTGAAAAGGACATGTTGTCACAATATCGATGTTTCGGAGTTGAAGAGGTGTATGCTGATATACTGAAAGAAACGTTTGATATTGAGTTCCTCCTCGTTGCAGAAGATGGCTCGGACACTTATCACATCTGTGACACCTGTATTGTGGAGCTCCGACAAGCATTCCAGTTTAAGCAACGTACTATTAGGAGTGCCATGAAGTTTCAACAACATATTGACAAACTGAATATGACCAGAGCAGGTGACAACACTAaacaagaaaaagaagaaggGAATGTCTCTgaagattttattgattatgGGTCTGAATGTTTTAGTGTTGAAGCACTTGATGATGattcagatgatcCTGAAACAACAACACAGACCGAGTCTATAAGTATTACACCGATGAAACGCAAGATCACTATGGAAGCTGGATATGAGCTCAAGAAAGCCAAAGTTGTGGAATCAGGAGACAAAATAAAAGAGAACACAGAATTTGAGATACAGATAGCCAAACCTGTGGAGCCAGGAGATAAACCAAGTGAGAGCAGAGATAATGGGCCAAATAGAGCCAAACCAAATCTAACAGTCAAAACAAGGGAAAATGAGCCAAATAAAACTAAGGATGAGGTCCCAAGAGgcaaaataaaagtgatgaaagGACAAAATAATGCTGCAAAGGAAAGTGCAAGGGATTTAGGGACCTCTCTACATAATACGATTGCTGGTAGTAAGACACATCAAACAGATATCACCGTAGCCGACGACAATGTGATACCAGACAACATATTGATGCTCCTAGAATGGTCCAACATATGTCTCTTCCATTACAACAGCTCAAAGGGAAAATACTTCAAATGCTACGTCTGCACCGAAACGTTTGCGGAACTAAGATCACTCAGAGCTCACACAGAAAGCCACGACAAAGCTGACATGATCATCAaaatactgcgctccaaaaTGGATACGGTGATATCCGCTGAGATTTCGTATCTCTCGTGCAAGTGCGGTCTGCGATGCGAGAAACTGTCTGATCTGATGAAACACTTGACTGATGAACACAAAATACCATTTGAGGATAAATCGTTGGATAACCTGGAAACTTATAAAATCGTGCAAAATGGTTTATTTTGCGATATGTGTGACAGTTCTGAGTTTAACTACTTTGGAAGGTTGAGGCATCACATGCAGGAGACGCATCTCAAGCAGAATATAGACATGTGCGACGTATGCGGGAAGGTTTTTAAAGGAGTGCTGACTGCTAGGCAGATGAAGGAGCATAAGAAAAATTTCCATGCCACAAGAAAGAATCTGAAATGCAAGAAAACTATAGACATCGACAATTTAGTCGCAATAGTCTCCAACTCCACCGCCTGTCCTTTCCACTGGCCCTCCGAGCGGCCCAAGCCCTACAAATGCTACTGCTGCCCTCAGCACTTCGAGGAGTTCAAAGACCTCAGACACCACTTCACCTCAAACCACGATATGGACAGTTTTCGCGCGGAAATGAAAGAGCAAGCCTTCAGACAGCCACTGAAAGTCGATATAACCGGCCTGAAGTGCACGAACTGCGAAGAACCCTGCGAGGATCTGGAAATACTGCGATTGCACCTATCGGACCGGCACAGCATCGAGTCTGATGAGGCGGAGAATGTGATAGCTCTGAAGATCGAAGAGGGCTACAAGTGCCTGGTCTGTCAGGATGAGTTTGAGGGGTGGGTGCCGCTGAACCGACACTTGCGCGTGGACAGCTGTGTGTCGACGTTGTCGTCGTCGAACAAGTTTGCGTGTGAGGACTGCGGGAAGAGGTTTGTCGGTAAGAAGACTTGGAGGGCGCATATGAAGCATATACATTCTGATGACAAGATGAATCCAACGACCGCCCTCCGCGCCAACACGAAAATCCTCCTCGGCTACTCCAACATGACGATATTCACCTTCGAAGACGTCTTGTTCCGGTGCTTCTCATGCCATGAGACCTTCATGCACTTCACCGCGCTCATGACACATAGCGACACTCACGACGTCGCCGCCGTCGACGCCGCCATGAAACTCACGAAGAACGCCCAGTCTTACAACATCAAAGCCGACATCACCGACCTAAAGTGCAATGTGTGTCAAAACGCTTTTGAGCAGATAGAGGAGTTCCAGACACATTTGATCGAATCGCATCAGGTGACGTTCTTTAAGGAGGGGAAGCACTATTTGATGCCGTATATGGTGAGAAATGGGATGAACTGCGGGTTTTGTAAGCAAAGTTTCCCTGTGAGCCAGTCGTTGATTCGGCATGTGAATTCTCACGGCGGCGGCGAGGTGTGCGAACATTGTGGAAAAGCGTTTATCCATGCGTATGAGCTGAAGCGGCACAAGAGACGCTCACACGGCGAGGTTAAGTGCTTGGTGTGTAATATAACTTTTGCGAATTACAAGGCGAGACAGCGGCATAACAAGAAACATCACGAAGGCGAGGGCCGTAAGAAAAAATTTGAGTGTGTGATTTGCAAAACGAATTTCACATGTTCAGAGTTTAAATACCGACATATGAAGAGCGAACACGGATATCAGCATACGGAATATAATTGTGTCTCTTGCGATAAAGTGTTCTGCACTAAAGGTGCCTACGAAAATCATATGAAAAGTCACGAAAAAATGGCAACGAAAATGATTCCATGTAAATATTGCTCGACTAGCTTCTTGCCGGAAAAATTTGAAGCGCACATTCAACACTCGCACAAGGAAGCACATAGGTCTAGGTGTTACGTGTGTAGGAATATGTTTGCGAGCCCGAACCTGTTGTGCGACCATTTGATAGACTCTCACAGCGATAATGCCTCATATTGCCCTCTATGCGAGTATCTACCTGAAGATATGGAGAGTCTATTGAATCATGTGAGGATTGATCACAAAATTGACAATATGTTTGATAGTGAGTGGATGGCCTTGATAAACAAGAGAAAGGTAAATAAGACAGTAATTATTACGAGAAAAAATGAAGCACAGGTCGAGGAGCTTCAATAA
Protein Sequence
MSSSSSGAVTPVPLSVCRCCLAEGCEKDMLSQYRCFGVEEVYADILKETFDIEFLLVAEDGSDTYHICDTCIVELRQAFQFKQRTIRSAMKFQQHIDKLNMTRAGDNTKQEKEEGNVSEDFIDYGSECFSVEALDDDSDDPETTTQTESISITPMKRKITMEAGYELKKAKVVESGDKIKENTEFEIQIAKPVEPGDKPSESRDNGPNRAKPNLTVKTRENEPNKTKDEVPRGKIKVMKGQNNAAKESARDLGTSLHNTIAGSKTHQTDITVADDNVIPDNILMLLEWSNICLFHYNSSKGKYFKCYVCTETFAELRSLRAHTESHDKADMIIKILRSKMDTVISAEISYLSCKCGLRCEKLSDLMKHLTDEHKIPFEDKSLDNLETYKIVQNGLFCDMCDSSEFNYFGRLRHHMQETHLKQNIDMCDVCGKVFKGVLTARQMKEHKKNFHATRKNLKCKKTIDIDNLVAIVSNSTACPFHWPSERPKPYKCYCCPQHFEEFKDLRHHFTSNHDMDSFRAEMKEQAFRQPLKVDITGLKCTNCEEPCEDLEILRLHLSDRHSIESDEAENVIALKIEEGYKCLVCQDEFEGWVPLNRHLRVDSCVSTLSSSNKFACEDCGKRFVGKKTWRAHMKHIHSDDKMNPTTALRANTKILLGYSNMTIFTFEDVLFRCFSCHETFMHFTALMTHSDTHDVAAVDAAMKLTKNAQSYNIKADITDLKCNVCQNAFEQIEEFQTHLIESHQVTFFKEGKHYLMPYMVRNGMNCGFCKQSFPVSQSLIRHVNSHGGGEVCEHCGKAFIHAYELKRHKRRSHGEVKCLVCNITFANYKARQRHNKKHHEGEGRKKKFECVICKTNFTCSEFKYRHMKSEHGYQHTEYNCVSCDKVFCTKGAYENHMKSHEKMATKMIPCKYCSTSFLPEKFEAHIQHSHKEAHRSRCYVCRNMFASPNLLCDHLIDSHSDNASYCPLCEYLPEDMESLLNHVRIDHKIDNMFDSEWMALINKRKVNKTVIITRKNEAQVEELQ

Similar Transcription Factors

Sequence clustering based on sequence similarity using MMseqs2

100% Identity
-
90% Identity
-
80% Identity
-