Basic Information

Gene Symbol
-
Assembly
GCA_029955255.1
Location
JARCGT010000014.1:5351322-5356148[+]

Transcription Factor Domain

TF Family
zf-C2H2
Domain
zf-C2H2 domain
PFAM
PF00096
TF Group
Zinc-Coordinating Group
Description
The C2H2 zinc finger is the classical zinc finger domain. The two conserved cysteines and histidines co-ordinate a zinc ion. The following pattern describes the zinc finger. #-X-C-X(1-5)-C-X3-#-X5-#-X2-H-X(3-6)-[H/C] Where X can be any amino acid, and numbers in brackets indicate the number of residues. The positions marked # are those that are important for the stable fold of the zinc finger. The final position can be either his or cys. The C2H2 zinc finger is composed of two short beta strands followed by an alpha helix. The amino terminal part of the helix binds the major groove in DNA binding zinc fingers. The accepted consensus binding sequence for Sp1 is usually defined by the asymmetric hexanucleotide core GGGCGG but this sequence does not include, among others, the GAG (=CTC) repeat that constitutes a high-affinity site for Sp1 binding to the wt1 promoter [1].
Hmmscan Out
# of c-Evalue i-Evalue score bias hmm coord from hmm coord to ali coord from ali coord to env coord from env coord to acc
1 13 0.00068 0.053 14.6 1.8 1 21 46 66 46 67 0.96
2 13 0.45 35 5.7 4.9 2 23 160 182 159 182 0.96
3 13 0.53 41 5.5 0.9 2 23 190 211 189 211 0.96
4 13 7.1e-06 0.00055 20.9 2.0 2 21 218 237 217 238 0.94
5 13 1.1e-07 8.4e-06 26.6 0.6 1 23 249 271 249 271 0.98
6 13 0.0002 0.015 16.3 5.4 1 23 279 301 279 301 0.99
7 13 0.0093 0.72 11.0 4.5 1 23 307 329 307 329 0.99
8 13 1.6e-06 0.00012 22.9 1.0 1 23 335 357 335 357 0.99
9 13 4.7e-05 0.0036 18.3 0.5 2 23 364 385 363 385 0.93
10 13 1.2e-05 0.00089 20.2 4.1 1 23 391 414 391 414 0.95
11 13 1.7e-06 0.00013 22.8 0.7 2 23 421 444 420 444 0.95
12 13 6.3e-05 0.0048 17.9 2.5 1 23 450 472 450 472 0.98
13 13 3.8e-05 0.003 18.5 2.6 2 23 479 501 479 501 0.97

Sequence Information

Coding Sequence
ATGACTTCGACGAGAAGAAGCAgccaaaattttcaaaacagcATGGCGATCGAAAACGTGATCGTCATCGTAGAAACACCCAACGGAGGCAGACCTGTTGAACAGATCACCAAAATAAAAACGTCGCTTATAGAATACATGTGCAACAGATGCAACAAAAAGTACACGACCAACTTGGGATTGAAGCGGCATTTGAAATTCTGCAACGATTCCGACAACgacattcaaattcaaatacccATGTCAAAAAATATTGACGACACCCAAAACAACAATCTGCCGTCGCAGAATATGAACCTTAACATTGAGAAGGCCACCATTGATATTCAAGCCGACAATCCATATGAATTCAACGACGACGATATAGTAAACTCAGCTGAGGAAAATTGTCCGAATGGTATGACTGCTGATGCTAGCGAAGATGTGTGCGAATGTTGCGGAGAGGACAAAAGTACTGCACATAAGGCGGGGGATCTCAAATGCGTATCTTGCAACAAATACTACAAGCACAAAGAAAAGTTTGATTTGCACTTAAAAAGATTCCACTCGACGTCTAAAAAGGCTTTGAAATGCTCGCAGTGCAAAGTGAAGTGCGAAGATGGCATTGCTTTCTTAGAACATATGAAAATCCACGACCGAGCCAATACGATCTCTTGTCCTActtgtaaaaaaaacttcaccAGGAAGTATCATTTGGAGAGACATCTGAAGCAAATCGGATGCGACGGACGCAAAACGTCCAGCTTCACCTGCGAAGTTTGCGATCGCGTTTTCGCTCGGAAGGATAATCTGCGGGAGCATTTGCGTTATCACATCGGCTTTACCAAGAAAACGTTCACGTGTGACTATTGCAGTAAAAATTTCCATAGGAGGCAGATGTTTATAACTCACATCAGAACGCATACTGGTGAATCTCCGTTCAAGTGTTCATTTTGCAGCAAATGTAACAAAACTAAAGGGGCGCTGGTGAAACATGAACGTACTCATACTGGAGAAAAGCCATATTCTTGCAAACAATGTGGGAGAGCATTTTCCGCAAAGGAAACGCTGAATAGACATGTAAAGACACACTTGGAAGATAAACCGATCGTTTGTTTAGAATGCGGTAAAACGTTTATCCAAATTTCACAACTACGCAATCACTTAGTTCATCACACTggtttaagtatttttaaatgtaaatactgCGATGTGACATTCACCCAAAAATCAAAaTTAAAGGCGCACGAAAAACACATACACGAAGGAGTCGAGAAGTTAACGTGCGATACAGATGGTTGTACTAAATCTTTCATAACCAAAGATGACCTTAAACGGCATCAAAGAATACACACCGATGTGAAACCATATCAATGTAAACAATGCGACAAAAGATTCCGTACATCAGGACAAAAATCCTCACACGAACGGGTCCATAAACGTGAACCGCCTCGAAGATGTTCCAAGTGTCCACGAGCTTTCATAAGAGCCGATTGTCTACTCCGACATATGCGCAACAAACATCCTGATGATTATAAAGCGTTGGTTGTTGCCACACGAAAGAACAAGctCGAGGTGATGAAAGCaaagttaaatatttacaaaaacgcCATTGGTAATAATAATTCGGCTATGTCTGATAACTCGTGTGAACTGATAAAATCATCCGATACTCTGGATACGCCTAGTGCTTCGGTCAAAGCGTGGACAATGTCAGATAACTCATGTGATGCATCTGCAGATTCTGAAGATGTCCAGTCGAGTAATGAAAATGAATTGATGAGTTTTCCAATGGAAAAGGTGAAACAAGCCAAGTTTACTAATGAAGCATTGGTGGCGAATGTCGAAGAACTCATAACTTTGTTGGTCGATAAAGACAGCTTGGATGCATTCGGATGGCCGCACGTCACCATTGATAAAgtATTAGAAGATGTTATAAAGAAGTGTGGCTGTGAACCTGTTTTGTCTAAAATGGGCAGAGAGGAAAAATTGCGGGAAAATACGAAATTGCTTCTTACAGTTGTTATTGACGATGCTTCTATGAAAAAATTAGTTGACACTCATACAATTGATGAAGTGATATTGCATGTATTACAGTTGGGGAAATcagtttaa
Protein Sequence
MTSTRRSSQNFQNSMAIENVIVIVETPNGGRPVEQITKIKTSLIEYMCNRCNKKYTTNLGLKRHLKFCNDSDNDIQIQIPMSKNIDDTQNNNLPSQNMNLNIEKATIDIQADNPYEFNDDDIVNSAEENCPNGMTADASEDVCECCGEDKSTAHKAGDLKCVSCNKYYKHKEKFDLHLKRFHSTSKKALKCSQCKVKCEDGIAFLEHMKIHDRANTISCPTCKKNFTRKYHLERHLKQIGCDGRKTSSFTCEVCDRVFARKDNLREHLRYHIGFTKKTFTCDYCSKNFHRRQMFITHIRTHTGESPFKCSFCSKCNKTKGALVKHERTHTGEKPYSCKQCGRAFSAKETLNRHVKTHLEDKPIVCLECGKTFIQISQLRNHLVHHTGLSIFKCKYCDVTFTQKSKLKAHEKHIHEGVEKLTCDTDGCTKSFITKDDLKRHQRIHTDVKPYQCKQCDKRFRTSGQKSSHERVHKREPPRRCSKCPRAFIRADCLLRHMRNKHPDDYKALVVATRKNKLEVMKAKLNIYKNAIGNNNSAMSDNSCELIKSSDTLDTPSASVKAWTMSDNSCDASADSEDVQSSNENELMSFPMEKVKQAKFTNEALVANVEELITLLVDKDSLDAFGWPHVTIDKVLEDVIKKCGCEPVLSKMGREEKLRENTKLLLTVVIDDASMKKLVDTHTIDEVILHVLQLGKSV

Similar Transcription Factors

Sequence clustering based on sequence similarity using MMseqs2

100% Identity
-
90% Identity
-
80% Identity
-