Amod105869.1
Basic Information
- Insect
- Allygus modestus
- Gene Symbol
- -
- Assembly
- GCA_963675035.1
- Location
- OY776117.1:20269491-20277885[-]
Transcription Factor Domain
- TF Family
- zf-CCCH
- Domain
- zf-CCCH domain
- PFAM
- PF00642
- TF Group
- Zinc-Coordinating Group
- Description
- This entry represents C-x8-C-x5-C-x3-H (CCCH) type Zinc finger (Znf) domains. Proteins containing CCCH Znf domains include Znf proteins from eukaryotes involved in cell cycle or growth phase-related regulation, e.g. human TIS11B (butyrate response factor 1, also known as mRNA decay activator protein ZFP36L1), a probable regulatory protein involved in regulating the response to growth factors, and the mouse TTP growth factor-inducible nuclear protein, which has the same function. The mouse TTP protein is induced by growth factors. Another protein containing this domain is the human splicing factor U2AF 35kDa subunit, which plays a critical role in both constitutive and enhancer-dependent splicing by mediating essential protein-protein interactions and protein-RNA interactions required for 3' splice site selection. It has been shown that different CCCH-type Znf proteins interact with the 3'-untranslated region of various mRNA [7, 8]. This type of Znf is very often present in two copies. Zinc finger (Znf) domains are relatively small protein motifs which contain multiple finger-like protrusions that make tandem contacts with their target molecule. Some of these domains bind zinc, but many do not; instead binding other metals such as iron, or no metal at all. For example, some family members form salt bridges to stabilise the finger-like folds. They were first identified as a DNA-binding motif in transcription factor TFIIIA from Xenopus laevis (African clawed frog), however they are now recognised to bind DNA, RNA, protein and/or lipid substrates [1, 2, 3, 4, 6]. Their binding properties depend on the amino acid sequence of the finger domains and of the linker between fingers, as well as on the higher-order structures and the number of fingers. Znf domains are often found in clusters, where fingers can have different binding specificities. There are many superfamilies of Znf motifs, varying in both sequence and structure. They display considerable versatility in binding modes, even between members of the same class (e.g. some bind DNA, others protein), suggesting that Znf motifs are stable scaffolds that have evolved specialised functions. For example, Znf-containing proteins function in gene transcription, translation, mRNA trafficking, cytoskeleton organisation, epithelial development, cell adhesion, protein folding, chromatin remodelling and zinc sensing, to name but a few [5]. Zinc-binding motifs are stable structures, and they rarely undergo conformational changes upon binding their target.
- Hmmscan Out
-
# of c-Evalue i-Evalue score bias hmm coord from hmm coord to ali coord from ali coord to env coord from env coord to acc 1 48 0.0023 19 7.9 0.4 2 22 159 180 158 182 0.90 2 48 0.0051 44 6.8 0.6 3 22 176 196 174 197 0.89 3 48 0.005 43 6.8 0.6 3 22 192 212 190 213 0.89 4 48 0.0099 85 5.9 1.9 3 21 208 227 206 228 0.88 5 48 0.0044 38 7.0 0.6 3 22 224 244 222 246 0.89 6 48 0.45 3.8e+03 0.6 0.0 3 13 240 250 238 251 0.87 7 48 0.19 1.7e+03 1.8 0.0 2 13 255 266 254 267 0.87 8 48 1.5 1.3e+04 -1.1 0.0 2 13 271 282 270 283 0.85 9 48 0.37 3.1e+03 0.9 0.0 4 16 289 302 288 305 0.86 10 48 0.1 8.7e+02 2.7 0.7 3 22 308 328 307 330 0.89 11 48 0.19 1.7e+03 1.8 0.0 2 13 339 350 338 351 0.87 12 48 0.44 3.8e+03 0.6 0.0 4 16 373 386 372 387 0.85 13 48 0.0021 18 8.0 0.3 2 22 387 408 386 410 0.90 14 48 0.15 1.3e+03 2.1 0.1 3 16 404 418 402 419 0.85 15 48 0.002 17 8.1 0.2 2 22 419 440 418 442 0.90 16 48 0.56 4.8e+03 0.3 0.0 3 13 436 446 434 447 0.87 17 48 0.0043 36 7.0 0.1 2 17 451 467 450 469 0.90 18 48 0.02 1.7e+02 4.9 0.0 3 22 472 492 470 494 0.84 19 48 0.21 1.8e+03 1.6 0.1 4 19 505 521 504 524 0.80 20 48 0.082 7e+02 3.0 0.0 2 16 519 534 518 535 0.85 21 48 0.002 17 8.1 0.2 2 22 535 556 534 558 0.90 22 48 0.75 6.4e+03 -0.1 0.0 3 13 552 562 551 563 0.88 23 48 0.16 1.4e+03 2.0 0.0 2 13 567 578 566 590 0.88 24 48 0.0049 42 6.8 0.7 3 22 590 610 588 612 0.89 25 48 0.0051 44 6.8 0.6 3 22 606 626 604 627 0.89 26 48 0.0049 42 6.8 0.6 3 22 622 642 620 643 0.89 27 48 0.01 86 5.9 1.9 3 21 638 657 636 658 0.88 28 48 0.0047 40 6.9 0.6 3 22 654 674 652 676 0.89 29 48 0.56 4.8e+03 0.3 0.0 3 13 670 680 668 681 0.87 30 48 0.19 1.7e+03 1.8 0.0 2 13 685 696 684 697 0.87 31 48 1.5 1.3e+04 -1.1 0.0 2 13 701 712 700 713 0.85 32 48 0.37 3.1e+03 0.9 0.0 4 16 719 732 718 735 0.86 33 48 0.1 8.7e+02 2.7 0.7 3 22 738 758 737 760 0.89 34 48 0.19 1.7e+03 1.8 0.0 2 13 769 780 768 781 0.87 35 48 0.44 3.8e+03 0.6 0.0 4 16 803 816 802 817 0.85 36 48 0.0021 18 8.0 0.3 2 22 817 838 816 840 0.90 37 48 0.15 1.3e+03 2.1 0.1 3 16 834 848 832 849 0.85 38 48 0.002 17 8.1 0.2 2 22 849 870 848 872 0.90 39 48 0.56 4.8e+03 0.3 0.0 3 13 866 876 864 877 0.87 40 48 0.0043 36 7.0 0.1 2 17 881 897 880 899 0.90 41 48 0.02 1.7e+02 4.9 0.0 3 22 902 922 900 924 0.84 42 48 0.21 1.8e+03 1.6 0.1 4 19 935 951 934 954 0.80 43 48 0.082 7e+02 3.0 0.0 2 16 949 964 948 965 0.85 44 48 0.002 17 8.1 0.2 2 22 965 986 964 988 0.90 45 48 0.75 6.4e+03 -0.1 0.0 3 13 982 992 981 993 0.88 46 48 0.0053 45 6.7 0.0 2 17 997 1013 996 1015 0.90 47 48 0.068 5.8e+02 3.2 0.7 3 22 1018 1038 1016 1040 0.88 48 48 2.3 2e+04 -1.7 0.0 2 11 1049 1058 1048 1059 0.85
Sequence Information
- Coding Sequence
- ATGATGCCAGCTTCCCGCGTGACCAAGCTGTCACTAAGTCCTCGGTGGCTAAACAGTTCACGTGACCAAGCTGTCACTCAGTCCTCAGTGGCTACTCAGTTTACCTGTCACTCAGTCTTCAGTGGCTACTCAGTTCACGTGACCCAGCTGTCACTCAGTCCTCGGTGGCTACTCAGTTTACGTGACCAAGCTGTCACTCAGTCCTCGGTGGCTACTCAGTTCACCTGTCACTCAGTCCTCGGTGGCTACTCAGTTCACGTGACCAAGCTGTCACTCAGTCCTCGGTGGCTACTCAGTTCACGTAACCAAGCTGTCACTCAGTCCACGGTGGCTACTCAGTTCACCTGTCACTCAGTCCTCCGTGGCTACGCTGTTCACGTGACCAAGCTGTCACTCAGTCCTCGGTGGCTACTCAGTTCACGTGACGAAGCTGTCACTCAGTCCACGGTGGCCTCTCAGTTCACCGTCTGCCAAGACGAGCCTCCTTGTAACGAGTATCAAGAGATTGGGAACGTCTGCCAATACGAGCCTCCTTGTAACGAGTATCAAGAGATTGGGAACGTCTGCCAATACGAGCCTCCTTGTAACGAGTATCAAGAGATTGGGAACGTCTGCCAATACGAGCCTCCTTGTAACGAGTATCAAGAGTTTGGGAACGTCTGCCAATACGAGCCTCCTTGTAACGAGTATCAAGAGATTGGGAACGTCTGCCAATACGAGCCTCCTTGTAACGAGTATCAAAAGATTGGGAATGTCTACCAAGACGAGCCTCCTTGTATCGATTATCAAGAAATAGGGAACGTCTTCCAAGACGAGTCTCCTTGTAACGAGCATCAAGAGATTGGAATCGTCTACCAAGTCGAGTCTCCTTGTATCAAGTATCAAGAGATTGGGAACGTCTGCCAAGACGAGCCTCATTACGAGCCTCCTTGTAACGAGTATCAAGAGATTAGGAACGTCTGCCAATACGAGCCTCCTTGTAACGAGTATCAAGAGATTGAGAATTTCTACCAAGACGAGCCTCCTTGTATCGATTATCAAGAAATAGGGAACGTCTTCCAAGACGAGTCTCCTTTTAACGAGCATCAAGAGATTGGAATCGTCTACCAAGTCGAGTCTCCTTGTATCAAGTATCAAGAGATTGGGAACGTCTGCCAAGACGAGCCTCCTTGTAACGAGTATCAAGAGATTGGGAACGTCTGCCAATACGAGCCTCCTTGTAACGAGTATCAAGAGATTGGGAACGTCTGCCAAGACGAGCCTCCTTGTAACGAGTATCAAGAGATTGGGAACGTCTGCCAATACGAGCCTCCTTGTAACGAGTATCAAGAGATTGGGAATGTCTACCAAGACGAGCCTCCTTGTACTGATTATCAAGAGATTGGGAACGTCTGCCAATACGAGCCTCCTTACGAGCCTCCTTGTATCGATTATCAAGAAATTGGGAACGTCTGCCAAGACGAGTCTCCTTGTAACGAGCATCAAGAGATTGGAATCGTCTACCAAGTCGAGTCTCCTTGTATCAAGTATCAAGAGATTGGGAACGTCTGTCAAGACGAGCCTCCTTGTAACGAGTATCAAGAGATTGGGAACGTCTGCCAAGACGAGCCTCCTTGTAACGAGTATCAAGAGATTGGGAACGTCTGCCAATACGAGCCTCCTTGTAACGAGTATCAAGAGATTGGGAATGTCTACCAAGACGAGCCTCCTTGTATTGATTATCAAGAGATTGGGAACTATCAAGAGATTGGGAACGTCTGCCAATACGAGCCTCCTTGTAACGAGTATCAAGAGATTGGGAACGTCTGCCAATACGAGCCTCCTTGTAACGAGTATCAAGAGATTGGGAACGTCTGCCAATACGAGCCTCCTTGTAACGAGTATCAAGAGATTGGGAACGTCTGCCAATACGAGCCTCCTTGTAACGAGTATCAAGAGTTTGGGAACGTCTGCCAATACGAGCCTCCTTGTAACGAGTATCAAGAGATTGGGAACGTCTGCCAATACGAGCCTCCTTGTAACGAGTATCAAGAGATTGGGAATGTCTACCAAGACGAGCCTCCTTGTATCGATTATCAAGAAATAGGGAACGTCTTCCAAGACGAGTCTCCTTGTAACGAGCATCAAGAGATTGGAATCGTCTACCAAGTCGAGTCTCCTTGTATCAAGTATCAAGAGATTGGGAACGTCTGCCAAGACGAGCCTCATTACGAGCCTCCTTGTAACGAGTATCAAGAGATTAGGAACGTCTGCCAATACGAGCCTCCTTGTAACGAGTATCAAGAGATTGAGAATTTCTACCAAGACGAGCCTCCTTGTATCGATTATCAAGAAATAGGGAACGTCTTCCAAGACGAGTCTCCTTTTAACGAGCATCAAGAGATTGGAATCGTCTACCAAGTCGAGTCTCCTTGTATCAAGTATCAAGAGATTGGGAACGTCTGCCAAGACGAGCCTCCTTGTAACGAGTATCAAGAGATTGGGAACGTCTGCCAATACGAGCCTCCTTGTAACGAGTATCAAGAGATTGGGAACGTCTGCCAAGACGAGCCTCCTTGTAACGAGTATCAAGAGATTGGGAACGTCTGCCAATACGAGCCTCCTTGTAACGAGTATCAAGAGATTGGGAATGTCTACCAAGACGAGCCTCCTTGTACTGATTATCAAGAGATTGGGAACGTCTGCCAATACGAGCCTCCTTACGAGCCTCCTTGTATCGATTATCAAGAAATTGGGAACGTCTGCCAAGACGAGTCTCCTTGTAACGAGCATCAAGAGATTGGAATCGTCTACCAAGTCGAGTCTCCTTGTATCAAGTATCAAGAGATTGGGAACGTCTGCCAAGACGAGCCTCCTTGTAACGAGTATCAAGAGATTGGGAACGTCTGCCAAGACGAGCCTCCTTGTAACGAGTATCAAGAGATTGGGAACGTCTGCCAATACGAGCCTCCTTGTAACGAGTATCAAGAGATTGGGAATGTCTACCAAGACGAGCCTCCTTGTATTGATTATCAAGAGATTGGGAACGTCTGCCAATACGAGCCTCCTTACGAGCCTCCTTGTAACGAGTATCAAGAGATTAGGAACGTCTGCCAATACGAGCCTCCTTGTAACGAGTATCAAGAGATTGAGAATTTCTACCAAGACGAGCCTCCTTGTATCAAGTATCAAGAGATTGAGAACGTCTCCCAAGACGAGCCTCCTTCTATCGAGTATTGA
- Protein Sequence
- MMPASRVTKLSLSPRWLNSSRDQAVTQSSVATQFTCHSVFSGYSVHVTQLSLSPRWLLSLRDQAVTQSSVATQFTCHSVLGGYSVHVTKLSLSPRWLLSSRNQAVTQSTVATQFTCHSVLRGYAVHVTKLSLSPRWLLSSRDEAVTQSTVASQFTVCQDEPPCNEYQEIGNVCQYEPPCNEYQEIGNVCQYEPPCNEYQEIGNVCQYEPPCNEYQEFGNVCQYEPPCNEYQEIGNVCQYEPPCNEYQKIGNVYQDEPPCIDYQEIGNVFQDESPCNEHQEIGIVYQVESPCIKYQEIGNVCQDEPHYEPPCNEYQEIRNVCQYEPPCNEYQEIENFYQDEPPCIDYQEIGNVFQDESPFNEHQEIGIVYQVESPCIKYQEIGNVCQDEPPCNEYQEIGNVCQYEPPCNEYQEIGNVCQDEPPCNEYQEIGNVCQYEPPCNEYQEIGNVYQDEPPCTDYQEIGNVCQYEPPYEPPCIDYQEIGNVCQDESPCNEHQEIGIVYQVESPCIKYQEIGNVCQDEPPCNEYQEIGNVCQDEPPCNEYQEIGNVCQYEPPCNEYQEIGNVYQDEPPCIDYQEIGNYQEIGNVCQYEPPCNEYQEIGNVCQYEPPCNEYQEIGNVCQYEPPCNEYQEIGNVCQYEPPCNEYQEFGNVCQYEPPCNEYQEIGNVCQYEPPCNEYQEIGNVYQDEPPCIDYQEIGNVFQDESPCNEHQEIGIVYQVESPCIKYQEIGNVCQDEPHYEPPCNEYQEIRNVCQYEPPCNEYQEIENFYQDEPPCIDYQEIGNVFQDESPFNEHQEIGIVYQVESPCIKYQEIGNVCQDEPPCNEYQEIGNVCQYEPPCNEYQEIGNVCQDEPPCNEYQEIGNVCQYEPPCNEYQEIGNVYQDEPPCTDYQEIGNVCQYEPPYEPPCIDYQEIGNVCQDESPCNEHQEIGIVYQVESPCIKYQEIGNVCQDEPPCNEYQEIGNVCQDEPPCNEYQEIGNVCQYEPPCNEYQEIGNVYQDEPPCIDYQEIGNVCQYEPPYEPPCNEYQEIRNVCQYEPPCNEYQEIENFYQDEPPCIKYQEIENVSQDEPPSIEY
Similar Transcription Factors
Sequence clustering based on sequence similarity using MMseqs2
- 100% Identity
- -
- 90% Identity
- -
- 80% Identity
- -