Basic Information

Gene Symbol
-
Assembly
GCA_034766995.1
Location
CM068325.1:5161300-5163642[-]

Transcription Factor Domain

TF Family
zf-C2H2
Domain
zf-C2H2 domain
PFAM
PF00096
TF Group
Zinc-Coordinating Group
Description
The C2H2 zinc finger is the classical zinc finger domain. The two conserved cysteines and histidines co-ordinate a zinc ion. The following pattern describes the zinc finger. #-X-C-X(1-5)-C-X3-#-X5-#-X2-H-X(3-6)-[H/C] Where X can be any amino acid, and numbers in brackets indicate the number of residues. The positions marked # are those that are important for the stable fold of the zinc finger. The final position can be either his or cys. The C2H2 zinc finger is composed of two short beta strands followed by an alpha helix. The amino terminal part of the helix binds the major groove in DNA binding zinc fingers. The accepted consensus binding sequence for Sp1 is usually defined by the asymmetric hexanucleotide core GGGCGG but this sequence does not include, among others, the GAG (=CTC) repeat that constitutes a high-affinity site for Sp1 binding to the wt1 promoter [1].
Hmmscan Out
# of c-Evalue i-Evalue score bias hmm coord from hmm coord to ali coord from ali coord to env coord from env coord to acc
1 13 0.00035 0.05 15.3 0.5 1 23 297 320 297 320 0.95
2 13 6e-05 0.0085 17.7 0.2 1 19 326 344 326 348 0.96
3 13 6.7e-05 0.0094 17.5 0.2 1 22 354 375 354 378 0.91
4 13 0.00029 0.041 15.5 0.2 3 23 400 420 398 420 0.94
5 13 3.3e-06 0.00046 21.6 0.3 3 23 428 449 426 449 0.96
6 13 0.00021 0.029 16.0 0.7 1 23 455 477 455 477 0.98
7 13 5.6e-05 0.0079 17.8 0.6 1 23 483 505 483 505 0.97
8 13 3.6e-06 0.00051 21.5 3.8 1 23 511 534 511 534 0.97
9 13 5.7e-06 0.00081 20.9 0.4 1 23 540 562 540 562 0.96
10 13 7.2e-05 0.01 17.4 3.4 3 23 570 591 568 591 0.93
11 13 1.5e-05 0.002 19.6 0.1 1 23 597 619 597 619 0.94
12 13 1.3e-05 0.0018 19.8 0.3 1 23 625 647 625 647 0.97
13 13 0.0053 0.74 11.6 0.1 1 23 653 675 653 675 0.94

Sequence Information

Coding Sequence
ATGGCGAACAGTTTCTGTGCGACGAGCGATCAGGACGAGAGCCCCGTCTGCAGGACGTGCTTGTCGAGCACGAATTGCGGCTACGACATATTTGCGGTGATGTGTTCGAACGAGGTGACATTAGCCGTCACTATTATGGAGTTCGCTCCTGTCCAGGCATGTACGGCATCGGGCTGGCTCACCGTCGGGTCATGGCTGGCGGAAGCTGGTTCGTATGGAGCGTTGCAGCATGTTTGCGTACAGTACGGATGGTTCGAAACGATGTCTAGTACTGTTCTGTTCCGATATATAACACCCGATGACGGTATATCGACGTTCATATGTAACGCTTGTGTGTGCCGACTCGAAAACTTCGTTCGGTTCCGTAGTACGTGCGTTCAGTCTACTGAAACGTTACTTCGTCAGCTGGAGGCCGAGACGGCTCGTCCAGCCGAAGATGGCGCGAGACTGATCGTCGATCCGTCGACGACCCGTATCGTAAATATGCCGAATATAGACTTCAACAAGGTCAAGATCGTCGACATCAAGACGGACGTAGAGCGGAACGAGACAGAAATCAATCTGCAGGATATCCGGTTAGACCCGATATCGTCCGGTGTCGACGACCTCGAATCTTTCGTGAGTTTCGAACGTGGTTCCGAACTCGAGTCTCGTGTTTCGAAACCGGAATCGGGACACGACCTCGCCGACGGGATCGTCGAGATCTGTAACGAGATCGAGATCGTCGACGACGACGGGTACATCGCCGAAGGGTACGTCGTCGAGTACGAGGTCACCGACGAGCCCCGGTACGAGATCGTCGGACCGGAAGAAGAACGGCGAGAAGCGGACGCTCCGAAGACGCCGGACGACGGCTCGATCGTCGCGAGACGAGCGAAACGGCGCAAACATCGGTGCGAGGACTGCGGAAGGGTGTACGTCGCACAGGCGCAGCTAGACAAGCACCGTTCGATATTCCACTCGGAGGACAGGCCGTACGTGTGCGACGTGTGCGGGATTCGGTTCACGAAGAAGATCAACCTGAACAAGCACGCGCCGCTGCACTCGCACGTCAAGCCGTACGCGTGCGACATCTGCGGGCTCGACTTCGCGCAGAGGGGCGCGTTGAGGAAGCACCTCAAGTACAGTACGCACACGCGGCTCCACGTCAAGAAGAAGAGCGGCGCGGACGGGACCGAAAACGGGTCGGCGTTCGGCTGCGACGTGTGTAAAAAGGCGTTCTCGGATAAATGGACTCTGTCGAAACACGCCGTCGTCCACTCGGACGAGAGGCCGTTCGGGTGCGGCGAGTGCGACAAGTCTTTCAACCGACCGGACACGCTGCGGAAGCACGTCGCGACGCAGCACTCGGACGAAAAGCCTTTCCGCTGCGACGCGTGCGGCAAACGATTCGCCCTGAAGCTGTTGCTCCGTTCGCACGAGCGCACCCACTCTTCCGAAAAGCCTTTCGAGTGCCCGCAGTGCAAGATGAGGTTCACGTCTAGGTCGTCGATGGCCGAACATCTCAAGGGACACGCGTCCGACAAAGCGCACAAGTGCCAGCTGTGCGGCAGACGGTTCTCGCGGAAGAGCTACGTCGCGCGGCACATGAAGATCAAGCACACGGACATCAGGCCGCACGAGTGTCCGGTGTGTTCGAAGGCGTTCAAGTCGAAGAGCAACTGGCGCGACCACGTCGCGATACACGACACGGTCCCGGCGAAATGCTGCGAGGTGTGCGGGAAGACGTTCGCGACGCAGAAACAACTCCACCTGCACACGAGGGCGGTCCACTCGACGGTCAGGCCGTTCAAGTGTTCCGGCTGCGGGCTGTCGTTCCCCACGAAGCCGGACCTCGAGCGGCACTCGGTCGTCCATTCGAACGTCAGGCCGTTCGTGTGCGACATCTGCGAGCGCGGATTCAAAAGACTGAAGGACTTGCGGAAACACGCGCTGATACACGACGAGTCGCGCGTGCACGTCTGCGACGTGTGCGGCGTGAAGTTCAAACTCGCCGCGACGCTCGACAAACACACGGCCGCGCACAAGGACGGCACGTTGAGAAAGCCGATGCGCGTGACGGACGCGTCGAAGCGGGACGTCAAATGA
Protein Sequence
MANSFCATSDQDESPVCRTCLSSTNCGYDIFAVMCSNEVTLAVTIMEFAPVQACTASGWLTVGSWLAEAGSYGALQHVCVQYGWFETMSSTVLFRYITPDDGISTFICNACVCRLENFVRFRSTCVQSTETLLRQLEAETARPAEDGARLIVDPSTTRIVNMPNIDFNKVKIVDIKTDVERNETEINLQDIRLDPISSGVDDLESFVSFERGSELESRVSKPESGHDLADGIVEICNEIEIVDDDGYIAEGYVVEYEVTDEPRYEIVGPEEERREADAPKTPDDGSIVARRAKRRKHRCEDCGRVYVAQAQLDKHRSIFHSEDRPYVCDVCGIRFTKKINLNKHAPLHSHVKPYACDICGLDFAQRGALRKHLKYSTHTRLHVKKKSGADGTENGSAFGCDVCKKAFSDKWTLSKHAVVHSDERPFGCGECDKSFNRPDTLRKHVATQHSDEKPFRCDACGKRFALKLLLRSHERTHSSEKPFECPQCKMRFTSRSSMAEHLKGHASDKAHKCQLCGRRFSRKSYVARHMKIKHTDIRPHECPVCSKAFKSKSNWRDHVAIHDTVPAKCCEVCGKTFATQKQLHLHTRAVHSTVRPFKCSGCGLSFPTKPDLERHSVVHSNVRPFVCDICERGFKRLKDLRKHALIHDESRVHVCDVCGVKFKLAATLDKHTAAHKDGTLRKPMRVTDASKRDVK

Similar Transcription Factors

Sequence clustering based on sequence similarity using MMseqs2

100% Identity
-
90% Identity
-
80% Identity
-